Search

Published After
Published Before

Search Results

  • Genetic progress in winter wheat quality and quantity parameters
    71-75
    Views:
    137

    Wheat production is significant branch of Hungarian crop production (with about 1 million hectares of sowing area). Weather anomalies resulted by climate change have increased the importance of biological basis in wheat production. Yield quality and quantity parameters of three wheat genotypes sown on chernozem soil type after maize pre-crop were studied in a long-term field experiment. Yield amount of the studied genotypes varied between 2894 and 8074 kg ha-1 in 2017 and between 5795 and 9547 kg ha-1 in 2018 depending on the applied treatments. Based on our results it can be stated that in both studied crop years the highest yield increment was realized by the application of the nutrient supply level of N30+PK. As the result of the application of the optimum mineral fertilizer level – in contrast to the control – resulted in significant yield increment in both crop years. The results of the long-term field experiment prove that water utilization of the studied wheat varieties / hybrids was improved by the application of the optimal nutrient supply. Furthermore, the water utilization of the latest genotypes was more favorable by both the control and the optimum nutrient supply level treatments. Analyzing the quality parameters of winter wheat using the NIR method it has been stated that the quality results of the well-known genotype (GK Öthalom) were better than those of the new genotypes. A negative correlation between winter wheat quality and quantity parameters has also been confirmed. As the result of the mineral fertilizer application protein and gluten content of winter wheat increased to a significant extent.

  • Comparative study of different soybean genotypes in irrigation technology
    91-95
    Views:
    274

    In many places in Hungary, early maturity soybean can be successfully grown. The earlier maturity group of soy which ripened in 110–125 days in most crop areas in Hungary. However, to achieve excellent results, the selection of proper varieties is important too. Successful cultivation is largely dependent on the macro and microclimate of the production area, the nutrient supply of the soil and the cultivation technology. Soybean can be produced in places where the amount of precipitation is right, as the lack of water results in lower yields and deteriorated oil and protein concentrations. In the following study, 2 years (2016 and 2017) are compared to the yield, protein and oil content of the soybeans of the early maturation group in irrigated and non-irrigated treatments. Based on our experiment, it can be stated that, during the irrigation of soybean, oil and protein content and yields did not always change.

  • The effects of agrotechnological factors on winter wheat yield in humid cropyear
    162-167
    Views:
    77

    The effects of crop rotation, nutrien supply and crop protection technologies, as well as the appearance of the main ear- and leafdiseases
    (powdery mildew, helminthosporium leaf spot, leaf rust, fusarium) were studied on the crop yields of winter wheat variety MV
    Pálma during the 2009/2010 crop year. The experiments were conducted in triculture (pea – wheat – corn) and biculture (wheat – corn), at
    five nutrition levels, with the use of three crop protection technologies (extensive, conventional and intensive) at the Látókép Research Site of
    the University of Debrecen, Centre of Agricultural Sciences. Our results proved that the appearance of leaf- and ear-diseases were
    significant in the wheat cultures during the 2009/2010 crop year, because of the rainy, warmer than usual weather, the lodging, and the huge
    vegetative mass developed. The most severe infections by the four examined diseases after pea and corn pre-crops were observed at
    extensive crop protection levels, when fertilizers were used at the highest dose.
    Following corn pre-crop, in the case of all the three crop protection technologies the maximum rate of wheat yield results were achieved
    at N150+PK level. The highest yield was reached at intensive crop protection level (6079 kg ha-1). In triculture, in case of all the three crop
    protection technologies the maximum yields were achieved at N50+PK level; in extensive technology 5041 kg·ha-1 yield, in conventional
    technology 6190 kg ha-1 yield was realised, while in the intensive technological model the yield was 7228 kg ha-1.
    The relationship between yield and fertilizer amounts, the rate of pathogen contaminations, crop protection technologies and pre-crops
    was defined with correlation analysis in case of different crop rotations during the 2009/2010 crop year. Based on the results of the
    experiment, we found that in stands after corn pre-crop strong positive correlation was established between the crop protection level and the
    crop yield (0.543), the nutrient levels and the emergence of the four examined pathogens, and between the nutrient levels and the yield
    (0.639). Extremly strong positive correlation was observed between crop protection and yield (0.843) in triculture. Strong positive
    correlation was detected between the nutrient levels and the presence of the four examined pathogens, as well as between nutrient and
    lodging (0.688). Strong negative correlation was between the crop protection level and the four examined diseases both in biculture and
    triculture.

  • Efficiency of Fertilization in Sustainable Wheat Production
    59-64
    Views:
    94

    In sustainable (wheat) production plant nutrition supply and fertilization play decisive roles among the agrotechnical elements, because of their direct and indirect effects on other agronomical factors.
    In long-term experiments, we studied the roles of agroecological, genetic-biological and agrotechnical factors in the nutrient supply, fertilization and its efficiency in wheat production under continental climatic conditions (eastern part of Hungary, Trans-Tisza) on chernozem soil. Our results have proved that there are different (positive and negative) interactions among ecological, biological, and agrotechnical elements of wheat production. These interaction effects could modify the nutrient demand, fertilizer (mainly nitrogen) response of wheat varieties and efficiency of fertilization in wheat production.
    The optimum N-doses (+PK) of wheat varieties varied from 60 kg ha-1 (+PK) to 120 kg ha-1 (+PK) depending on cropyears, agrotechnical elements and genotypes. The winter wheat varieties could be classified into 4 groups according to their fertilizer demand, natural and fertilizer utilization, fertilizer response and yield capacity.
    Appropriate fertilization (mainly N) of wheat could affect both the quantity and quality of the yield. By using optimum N (+PK) fertilizer doses, we could manifest genetically- coded baking quality traits of winter wheat varieties and reduce quality fluctuation caused by ecological and other management factors. The efficiency of fertilization on different baking quality parameters (wet-gluten, valorigraph index etc) were variety specific (the changes depended on genotypes).
    Our long-term experiments proved that appropriate fertilization provides optimum yield, good yield stability and excellent yield quality in sustainable wheat production. We could this get better agronomic and economic fertilization efficiency with less harmful environmental effects.

  • Environmental friendly maize (Zea mays L.) production on chernozem soil in Hungary
    133-135
    Views:
    87

    We have been studied the effects of crop-rotation, fertilization and irrigation on the yields of maize in different cropyears characterized
    by different water supply (2007 year=dry; 2008 year=optimum) on chernozem soil. Our scientific results proved that in water stress
    cropyear (2007) the maximum yields of maize were 4316 kg ha-1 (monoculture), 7706 kg ha-1 (biculture), 7998 kg ha-1 (triculture) in non
    irrigated circumstances and 8586 kg ha-1, 10 970 kg ha-1, 10 679 kg ha-1 in irrigated treatment, respectively. In dry cropyear (2007) the
    yield-surpluses of irrigation were 4270 kg ha-1 (mono), 3264 kg ha-1 (bi), 2681 kg ha-1 (tri), respectively. In optimum water supply cropyear
    (2008) the maximum yields of maize were 13 729-13 787 (mono), 14 137-14 152 kg ha-1 (bi), 13 987-14 180 kg ha-1 (tri) so there was no
    crop-rotation effect. In water stress cropyear (2007) fertilization caused yield depression in non irrigated treatment (control=2685 kg ha-1;
    N240+PK=2487 kg ha-1). Our scientific results proved that the effects of abiotic stress could be strongly reduced by using the optimum crop
    models in maize production. We obtained 8,6-11,0 t ha-1 maximum yields of maize in water stress cropyear and 13,7-14,2 t ha-1 in optimum
    cropyear on chernozem soil with using appropriate agrotechnical elements.

  • Relationships between nutrientsupply, genotype and some physiological properties of winter wheat
    141-145
    Views:
    131

    The chlorophyll content (SPAD), leaf area index (LAI) and leaf area duration (LAD) of three winter wheat varieties have been investigated on a chernozem soil. Three winter wheat varieties (GK Öthalom, Pannonikus and Genius) in three different nutrient-supply levels have been involved in our experiment in the crop-year of 2010/2011. The investigated physiological properties have been set against to the yield results. Upon the results of this comparison it has been stated that there is a close relationship between the investigated physiological properties and yield averages. The SPAD-values showed a growing tendency parallel to the growth of the nutrient-supply levels. The varieties have the highest SPAD-values at the nutri ent-level of N120+PK. Compared to the yield averages we have stated that varieties that have higher SPAD-values have realized higher yields as well. Higher nutrient dosages have increased in the leaf area. In case of all the three varieties the highest LAI-values were measured at the flowering stage (23. 05.) in the treatment whit N120+PK. Varieties with higher leaf area have produced higher yields as well. Parallel to the increasing nutrient-supply levels the value of leaf area duration increased as well. We measured the highest LAD-values in the treatment of N120+PK nutrient-level. By the LAD-values it can be stated that more durable and larger leaf area has been produced in the flowering and ripening phenophases, due to the higher nutrient-dosages. Analysing the relationships between the results it can be stated that there is a strong positive relationship between fertilizer treatments and SPAD-, LAI- and LAD-values. The genotype showed a strong positive correlation to SPAD-values. Yield averages showed strong positive correlation to SPAD-, LAI- and LAD-values as well.

  • The Effect of Forecrop and Plant Protection on the Pathology Parameters and Yields of Winter Wheat
    84-89
    Views:
    88

    We carried out our experiment in the cropyears of 2000/2001, 2001/2002 and 2002/2003, on calcareous chernozem soil, at the experimental site of the Debrecen University Farm and Regional Research Institute, at Látókép. We examined the disease resistance and the yield quantity of Mv Magvas variety by adopting different forecrops and plant protection technologies, at 30+30 N level and at normal cereal row spacing. We applied two forecrops (wheat and pea) and two plant protection technologies (extensive and intensive). We measured the rate of infection by population survey in the first ten days of June.
    In the course of our examinations, we found, that the rate of powdery mildew infection was higher in the thicker population sown after pea forecrop in all three years, as powdery mildew is not a typical cereal disease.
    The infection rate of leaf mildew and DTR (Dreschlera tritici-repentis) was higher after wheat forecrop in all examined years, because these are typical wheat diseases and infection centres in the soil promote the spreading of these diseases. However, it was possible to parry the adverse effect of forecrops by intensive plant protection.
    Due to the chernozem soil, wich has good water management features, and due to the good preparation of the seedbed, the effect of forecrops on yield quantity did not appear in the examined years. The quantity of the yield was only slightly larger after pea forecrop in the cropyears of 2000/2001 and 2002/2003 than after wheat. Nonetheless, the data of technical literatures state that the yield quantity can be larger, even by 15-20%, after pea forecrop.
    In the course of intensive plant protection technology, we applied systemic pesticides, while in the course of environmentally sound technology, we used contact pesticides of sulphur content. In those populations that were treated with environmentally sound plant protection technology, infection rate was higher in all three years.
    Yield quantities were somewhat lower in the course of applying extensive, environmentally sound technology, because diseases appeared in these populations to the higher degree. Powdery mildew does not, but leaf mildew and Dreschlera tritici-repentis have a significant yield decreasing effect. With appropriate, well-selected fungicides, we were able to keep every leaf diseases well in hand, and the rate of infection was almost independent of the influence of the breeding year.

  • Role of some agrotechnical elements in the precision crop technology of cereals
    241-244
    Views:
    116

    The crop models and precision technology have an important role in the development of winter wheat and maize agrotechnics, which crops have determinative role in Hungarian crop production. The effects of agrotechnical elements (crop rotation, fertilization, irrigation, crop protection, plant density) were studied in our longterm experiments on chernozem soil. Our scientific results proved that the high yields, and good yield stability were obtained in the input-intensive crop models. Maize had lower ecological adaptive capacity than winter wheat. The optimatization of agrotechnical elements reduces the harmful climatic effects so we can increase the yield and yield stability of cereals agro-ecosystems. The yields of wheat varied between 2 and 7 t ha-1 in extensive and 8 and 10 t ha-1 in intensive crop models and the yields of maize ranged between 2 and 11 t ha-1 and 10 and 15 t ha-1, respectively.

  • Baking quality of winter wheat (Triticum aestivum L.) in the long-term experiments on chernozem soil
    152-156
    Views:
    69

    Agriculture has traditionally an important role in Hungarian economy and rural development. About 75 % of Hungary’s total territory
    is under agricultural land use. Because of ecological conditions and production traditions cereals (wheat, maize etc) have the greatest
    importance in Hungarian crop production. In the 1980’s the country-average yields of wheat were about 5,0-5,5 t ha-1 („industrial-like”
    crop production-model). In the 1990’s the yields of wheat dropped to 4,0 t ha-1 because of low input-using and wide application of the issues
    of environmental protection and sustainability. Winter wheat production for quality has a decisive role in certain regions of Hungary
    (eastern and middle-parts).
    The quality of wheat is complex and different. Three major growing factor groups determine the quality of winter wheat: genotype,
    agroecological conditions and agrotechnical factors. In wheat production for quality the selection of the variety is the most important
    element. Our long-term experiments proved that the quality traits of a variety means the highest (maximum) limit of quality which could not
    be exceeded in fact. During the vegetation period of wheat the different ecological and agrotechnical factors could help or on the contrary
    could demage the quality parameters of wheat.
    The agrotechnical factors determining the baking quality of wheat can be divided into two groups: the first group means the factors with
    direct effects on quality (fertilization, irrigation, harvest); the second group contains the elements with indirect effects on quality (crop
    rotation, tillage, planting, crop protection).
    Appropriate fertilization could help to manifest the maximum of quality parameters of a wheat genotype and could reduce the qualityfluctuation
    in unfavourable ecological and agrotechnical conditions.

  • Investigation of harvest index influencing agrotechnical and botanical factors in hairy vetch (Vicia villosa Roth.)
    123-128
    Views:
    115

    The biggest problem of Hungarian crop farming is mass production and the simple crop rotation based on cereals. There was a decrease in sowing area of protein crops which raises crucial issues in crop rotation and land use. Therefore, growing papilionaceous plants, which are now considered to be alternative plants, should be taken under close examination. Hairy vetch (Vicia villosa Roth.) belongs to the family of papilionaceous plants and it can be grown in light weak soils.

    In Hungary, hairy vetch was used as green forage at first, but it later became a green manure plant.  Nowadays, it is used as a cover crop and its sowing seed has a good export market. In low fertile soils it is able to produce a big amount of green yield (25–40 t ha-1) even in spring while its seed yield could be 0.4–0.5 t ha-1 at farm level. In addition to its morphological characteristics hairy vetch is grown mainly with a supporting plant, i.e. triticale in many cases.

    Our purpose was to test the harvest index and its agrotechnical and botanical factors of hairy vetch in different cropping systems.

  • The response of sunflower hybrids to different plant densities on a chernozem soil
    123-128
    Views:
    147

    In our experiment the reaction of six sunflower hybrids of different genotypes (NK Oktava, ES Biba, ES Diagora, ES Ballistic, EGH 8925, PR 64 H 42) towards plant density has been investigated by different fungicide treatments in the crop-year of 2011 on a chernozem soil. 
    In the crop-year of 2011 sunflower populations were infected by a significant Diaporthe helianthi disease. The extent of this infection was significantly enhanced by the increment of plant density. However, regarding the average of the hybrids and plant densities the two times executed fungicide treatment has decreased the infection rate by 22%. The most susceptible hybrid was the ES Biba. Contrarily, the hybrid ECH8925 proved to be the most resistant hybrid towards this
    disease according to our results. According to the results of the Pearson’s correlation analysis it has been revealed that stalk breakage and Diaporthe infection stand in a very close (r=0.782**) and middle close (r=0.523**) correlation resp. with plant density. The relationship between fungucude treatments and stalk breakage, just as Diaporthe infection showed to be middle and close respectively. Our results demonstrate the role of stalk and plate diseases (among them Diaporthe) in causing stalk breakage, for we have found a close positive correlation between stalk breakage and Diaporthe infection (r=0.624**) in our analysis.
    From the aspect of yield amount the optimal plant density varied between 45 000 and 55 000 plants per hectare. Fungucude treatments enabled not only the use of higher plants densities, but they had a yield increasing effect as well. In the crop-year of 2011 the highest yield (4 559 kg ha-1) on a chernozem soil has been measured in case of the hybrid ECH8925.

  • Comparative study of a winter wheat variety and hybrid sown after different pre-crops on chernozem soil
    63-69
    Views:
    205

    Wheat production is a determining branch within Hungarian crop production (produced on nearly one million hectares). Weather anomalies caused by climatic change confirmed the importance of the biological background (variety, hybrid) in wheat production. The adapting ability and reaction of different wheat genotypes towards nutrient supply were studied in a long-term field experiment on chernozem soil type in the case of different pre-crops (sunflower and maize). According to the experimental results of the vegetation of 2017/2018, the yield of the variety Ingenio sown after the sunflower as previous crop ranged between 4168 and 8734 kg ha-1, while in the case of maize as previous crop, this value ranged between 2084 and 7782kg ha-1, depending on the applied nutrient supply level. The studied genotypes produced rather significant yield surplus as a response to the application of mineral fertilization (4.6–5.1 t ha-1 after sunflower and 5.7–6.3 t ha-1 after maize). Optimal mineral fertilizer dosage was determined by both the genotype and the pre-crop. N-optimum values of wheat genotypes was determined using regression analysis. In the case of the variety Ingenio sown after sunflower, the optimum range was N144-150+PK, while after maize, it was
    N123-150+PK, respectively. For the hybrid Hyland, these optimum ranges were N114-120+PK, just as N150-153+PK, resp. The application of optimal mineral fertilizer dosages improved water utilization of the studied wheat genotypes to a significant extent. WUE values of the control, unfertilized treatments ranged between 4.1–8.3 kg mm-1, while in optimal fertilizer treatment, it ranged between 15.5 and 17.4 kg mm-1.

  • N-fertilization using „Biofert” in Sustainable Maize Production
    30-33
    Views:
    94

    In synthetic fermentation of lysine (amino-acid) a by-product (Biofert) originates which can be characterized by 6% N-content and other ingredients (vitamins, enzymes, micro-elements etc). In small and large plot experiments Biofert was studied in different agroecological (cropyear, soil), biological (genotypes) and agrotechnical (non-irrigated and irrigated; N-splitting etc) conditions in order to obtain information about agronomic efficiency and environmental effects of its applications.
    Our results proved that Biofert has the same agronomic efficiency as traditional N-fertilizers (applied in equal doses and splitting), but Biofert has economic and environmental advantages (less N-leaching in soils) for maize production. We found a special interaction between N-supply and irrigation. In maize production (irrigation) with the optimum application of nutrient- (N-fertilization, Biofert) and water- supply we could stabilize maize yields at a high level (11.0-14.0 t/ha) fairly independently of agroecological factors. When applying Biofert in autumn, NO3-N leaching was less in 100-200 cm chernozem soil-layers than for applications of traditional N-fertilizer. There were no differences between different maize genotypes concerning the agronomic efficiency of Biofert. In maize production 120-190 kg/ha N (chernozem soil) and 165 kg/ha N (meadow soil) doses of Biofert were the optimum doses in splitting applications (autumn + spring).

  • The Influence of Cropyear on the Yield and Yield Safety of Different Sunflower Hybrids
    68-73
    Views:
    98

    The effectiveness of plant production is basically influenced by the ecological, biological and agricultural technical factors. There are many kinds of sunflower hybrids which differres in their adaptability. If we want to increase the efficiency of sunflower production, we have to design different technologies for each hybrid. In the last decade, the range of sunflower hybrids increased exceedingly. This is the reason why we have to do experiments with them and examine what the relationship among genotypes, the environment and the hybrids is.
    We made our experiments at the Látóképi Experimental Station of the University of Debrecen. We had 57 hybrids in 2001, and 44 in 2002 and 2003. We used only just those hybrids which were planted in every year.
    In 2001 the months at summer were hot and the distribution of rainfall was extreme. In the beginning of the year 2002, the summer was also hot. During the abscessing period, the temperature was under the 30 years average and the rainless period was typical. In 2003, the temperature was extrame and the rainfall during the growing season was dry. The yield average which was determined after the three years in the very early group averaged 3998,9 kg/ha. The best hybrids were the LG 5385 (4273,3 kg/ha) and the Magóg (4134,4 kg/ha). The early group’s average was 4129,4 kg/ha. The best hybrid was the Astor in the early group. The middle group’s average was 4169 kg/ha and the Zoltán had a better yield than average (4238 kg/ha). In the confectionary group the Iregi szürke csíkos (3579,9 kg/ha) reached the best yield and it is above the average to it’s group (3225 kg/ha).
    To estimate the results, we used factor analysis. Its results allow us to say that rainfall first and second part of June has a negative influence on yield. Aswith to the yield, yield safety is also important to know, which shows the adaptability of the hybrid.
    After examining the CV% in the three years we can say that the most stable hybrids were in the very early group Samanta (10,94 CV%) and the LG 5385 (12 CV%) In the early group, the most reliable hybrids were Altesse RM (6,9 CV%) and the Astor (10,8 CV%) and the end in the middle group the Lympil (10 CV%) and in the confectionary group the Birdy (9,8 CV%) and IS 8004 (12 CV%) were the best.
    After examining yield and yield safety, our conclusions are that in the Hajdúsági löszhát, the very early group LG 5385, early group Altesse RM, middle group Lympil and the parandial group IS 8004 hybrid had the highest yield and the best yield stability.

  • Wheat cleaning and milling technologies to reduce DON toxin contamination
    89-95
    Views:
    167

    Mycotoxicosis caused by Fusarium fungi holds a huge risk considering economic and food safety issues worldwide. By applying milling technologies, we attempted to reduce the concentrates of DON toxin, as it is the most often found toxin in wheat.

    The processes of sieving, aspiration and combination had been used on wheat with high DON toxin concentration. As a next step, grains were sorted using a horizontal cylinder separator, assorted by an optical and a gravity separator, and finally, the products were scoured and ground. The contamination level of the wheat and flour samples were defined by the HPLC-MS method.

    Regarding the results, it can be stated that toxin concentration was most effectively reduced by optical separation and scouring, and by applying these milling techniques, food safety can be increased significantly.

  • The Effect of Plant Density on the Yield of Sunflower Hybrids in 2000-2002
    96-99
    Views:
    115

    In order to ensure modern Hungarian sunflower production, the development of hybrid-specific techniques are highly important. The continual expansion in hybrid choice makes the examination of genotypes necessary in the relation of genotype and environment interactions and critical factors. The Plant density as a complex determinant factor has a strong effect on sunflower yield, quality and plant hygiene. As a result of the experiments, we can state that the optimal density was 45.000-65.000 plant/hectar. In 2001-2002, the optimal density was 45.000-55.000 plant/hectar; while in 2000, it was 65.000 plant/hectar.

  • Testing disease resistance in autumn wheat genotypes by means of field experiments
    30-40
    Views:
    80

    According to our scientific results we can state that we have to use integrated pesticides management in crop protection against the diseases of winter wheat. One of the most important elements of IPM is to select a genotype characterised by good resistance to diseases (and by high yield ability and excellent baking quality). It is especially important that the wheat variety have tolerance against not only to one or two leaf and spike (grain) diseases, but „complex” tolerance. It is not necessary to give up the growing of a variety which has susceptibility to different diseases because we can protect it using appropriate chemical management. In the intensive growing stage of wheat (BBCH 32-37) we can use a noncompulsary fungicide-treatment (depending on e. g. the infection, ecological conditions) and, at the beginning of the flowering stage
    (BBCH 59-65), we have to use a compulsary fungicide-treatment (in spite of e. g. special weather conditions, resistance genotype)to ensure high yield and good quality.

  • Examination of the Effect of Cropyear on the Yield Potential and Yield Stability of Winter Wheat Varieties
    62-67
    Views:
    100

    Variety selection is one of the most important, determinative elements of sustainable winter wheat production. Yield potential, and yield stability are the most important elements in the variety selection of winter wheat, but baking quality parameters play an important role, too.
    Several winter wheat varieties were tested for yield and yield stability on chernozem soil in the Hajdúság (in the eastern part of Hungary), in the 2001-2002-2003-2004 cropyears. The management factors were the same for all cropyears. 15 varieties in early the maturity group, 14 varieties in the middle maturity group and 4 varieties in the late maturity group were tested in the above mentioned cropyears. The climatic conditions were average in 2001, dry in 2002, extremely dry in 2003, and very favourable in 2004.
    We obtained 5298-6183 kgha-1 yield from early maturity varieties, 5683-6495 kgha-1 from middle, 5694-6031 kgha-1 from late ones in the average of four years. The cropyears had strong influence on the yields, even on chernozem soil, and were characterized by excellent water – and nutrient – husbandry. Averaging of cropyears and genotypes, we obtained 6984 kgha-1 in 2001 (average cropyear), 5452 kgha-1 in 2002 (dry cropyear), 3120 kgha-1 in 2003 (extremely dry cropyear) and 8400 kgha-1 in 2004 (optimum cropyear), respectively. The yield differences between the minimum and maximum yields were 885 kgha-1 in early varieties, 812 kgha-1 in middle and 337 kgha-1 in late maturity varieties, respectively. The varieties characterized by high yield potential and the varieties characterized by good yield stability were different, so in variety selection we have to take both genetic traits into consideration. There were positive, significant correlations among the yields of winter wheat varieties (early, middle, late), the temperature of spring months. (March-April), and the rainfall of spring months (March-April) (R2=0,703**-0,768** and R2=0,681**-0,749**, respectively). We found a high negative correlation between the temperature of early summer months (May-June) and the yields of wheat varieties (R2= -0,856**- -0,918**).
    According to the results of our experiment, it is very important to harmonize yield potential and yield stability in the variety selection of winter wheat.