The potential use of Pediococcus spp. probiotic in aquaculture: A review
Authors
View
Keywords
License
Copyright (c) 2025 by the Author(s)

This work is licensed under a Creative Commons Attribution 4.0 International License.
How To Cite
Accepted 2025-02-27
Published 2025-06-08
Abstract
Aquaculture production has significantly increased over the previous few decades. However, antibiotics have been implemented regularly and extensively to overcome outbreaks of pathogens in aquaculture to cover the human needs for animal protein, leading to the appearance of resistant strains that may cause serious damages in the environment and also human health. In the last few years, the implementation of probiotics as an alternative technique to antibiotics use in fish production has achieved promising results in aquaculture due to their beneficial impact on fish health and growth performance. Among different types of probiotics, the Pediococcus spp. bacteria stand out as a promising probiotic for their beneficial impact to aquaculture. Thus, the current study has been conducted to give an overview about the interactions between Pediococcus spp. and aquaculture. In addition, this review highlights the role of Pediococcus spp in promoting growth performance, improving feed conversion ratios and the intestinal architecture, enhancing the immune response and inhibiting fish pathogens, thereby preventing or at least reducing the use of antibiotics. Practical use of Pediococcus spp. probiotic in aquaculture as feed additives through selected case studies is also considered.
References
- Abarike, E.D.; Jian, J.; Tang, J.; Cai, J.; Yu, H.; Lihua, C.; Jun, L. (2018): Influence of traditional Chinese medicine and Bacillus species (TCMBS) on growth, immune response and disease resistance in Nile tilapia, Oreochromis niloticus. Aquaculture Research, 49(7), 2366–2375. https://doi.org/10.1111/are.13691
- Abid, A.; Davies, S.; Waines, P.; Emery, M.; Castex, M.; Gioacchini, G.; Carnevali, O.; Bickerdike, R.; Romero, J.; Merrifield, D. (2013): Dietary synbiotic application modulates Atlantic salmon (Salmo salar) intestinal microbial communities and intestinal immunity. Fish & Shellfish Immunology, 35(6), 1948–1956. https://doi.org/10.1016/j.fsi.2013.09.039
- Adel, M.; Yeganeh, S.; Dawood, A.O.; Safari, R.; Radhakrishnan, S. (2017): Effects of Pediococcus pentosaceus supplementation on growth performance, intestinal microflora and disease resistance of white shrimp, Litopenaeus vannamei. Aquaculture Nutrition, 23(6), 1401–1409. https://doi.org/10.1111/anu.12515
- Ahmadifar, E.; Sadegh, T.H.; Dawood, M.A.; Dadar, M.; Sheikhzadeh, N. (2019): The effects of dietary Pediococcus pentosaceus on growth performance, hemato-immunological parameters and digestive enzyme activities of common carp (Cyprinus carpio). Aquaculture, 516, 734656. https://doi.org/10.1016/j.aquaculture.2019.734656
- Ahmadifar, M.; Esfahani, D.E.; Ahmadifar, E.; Sheikhzadeh, N.; Mood, S.M.; Moradi, S. (2023): Combined effects of Spirulina platensis and Pediococcus acidilactici on the growth performance, digestive enzyme activity, antioxidative status, and immune genes in zebrafish. Annals of Animal Science, 23(4), 1159–1167. https://doi.org/10.2478/aoas-2023-0019
- Arani, M.M.; Salati, A.P.; Safari, O.; Keyvanshokooh, S. (2019): Dietary supplementation effects of Pediococcus acidilactici as probiotic on growth performance, digestive enzyme activities and immunity response in zebrafish (Danio rerio). Aquaculture Nutrition, 25(4), 854–861. https://doi.org/10.1111/anu.12904
- Aubin, J.; Gatesoupe, J.; Labbé, L.; Lebrun, L. (2005):. Trial of probiotics to prevent the vertebral column compression syndrome in rainbow trout (Oncorhynchus mykiss Walbaum). Aquaculture Research, 36(8), 758–767. https://doi.org/10.1111/j.1365-2109.2005.01280.x
- Boonthai, T.; Vuthiphandchai, V.; Nimrat, S. (2011): Probiotic bacteria effects on growth and bacterial composition of black tiger shrimp (Penaeus monodon). Aquaculture Nutrition, 17(6), 634–644. https://doi.org/10.1111/j.1365-2095.2011.00865.x
- Eissa, M.E.; Alaryani, F.S.; Elbahnaswy, S.; Khattab, M.S.; Elfeky, A.; AbouelFadl, K.Y.; Eissa, E.H.; Ahmed, R.A.; Van Doan, H.; El-Haroun, E. (2023): Dietary inclusion of Pediococcus acidilactici probiotic promoted the growth indices, hemato-biochemical indices, enzymatic profile, intestinal and liver histomorphology, and resistance of Nile Tilapia against Aspergillus flavus. Animal Feed Science and Technology, 306, 115814. https://doi.org/10.1016/j.anifeedsci.2023.115814
- Eissa, S.H.; Baghdady, E.S.; Gaafar, A.Y.; El-Badawi, A.A.; Bazina, W.K.; Abd Al-Kareem, O.M.; B. Abd El-Hamed, N.N. (2022): Assessing the Influence of Dietary Pediococcus acidilactici Probiotic Supplementation in the Feed of European Sea Bass (Dicentrarchus labrax L.) (Linnaeus, 1758) on Farm Water Quality, Growth, Feed Utilization, Survival Rate, Body Composition, Blood Biochemical Parameters, and Intestinal Histology. Aquaculture Nutrition, 5841220. https://doi.org/10.1155/2022/5841220
- Elsabagh, M.; Mohamed, R.; Moustafa, E.M.; Hamza, A.; Farrag, F.; Decamp, O.; Dawood, A.O.; Eltholth, M. (2018): Assessing the impact of Bacillus strains mixture probiotic on water quality, growth performance, blood profile and intestinal morphology of Nile tilapia, Oreochromis niloticus. Aquaculture Nutrition, 24(6), 1613–1622. https://doi.org/10.1111/anu.12797
- FAO (2024a): Fishery and Aquaculture Statistics – Yearbook 2021. FAO Yearbook of Fishery and Aquaculture Statistics. Rome.
- FAO (2024b): The State of World Fisheries and Aquaculture 2024 – Blue Transformation in action. Rome.
- FAO/WHO (2001): Health and nutritional properties of probiotics in food including powder milk with liver lactic acid bacteria. Food and Agriculture Organization and World Health Organization Joint report.
- Ferguson, R.; Merrifield, D.; Harper, G.; Rawling, M.; Mustafa, S.; Picchietti, S.; Balcázar, J.; Davies, S. (2010): The effect of Pediococcus acidilactici on the gut microbiota and immune status of on-growing red tilapia (Oreochromis niloticus). Journal of Applied Microbiology, 109(3), 851–862. https://doi.org/10.1111/j.1365-2672.2010.04713.x
- Fuller, R. (1989): A review: probiotics in man and animals. J Appl Bacteriol 66, 365–378. https://pubmed.ncbi.nlm.nih.gov/2666378/
- Gao, P.; Mao, D.; Luo, Y.; Wang. L.; Xu, B.; Xu, L. (2012): Occurrence of sulfonamide and tetracycline-resistant bacteria and resistant genes in aquaculture environment. Water Res 46:2355–2364. https://doi. org/10.1016/j.watres.2012.02.004
- Ghosh, A.K. (2023): Functionality of probiotics on the resistance capacity of shrimp against white spot syndrome virus (WSSV). Fish & Shellfish Immunology, 140, 108942. https://doi.org/10.1016/j.fsi.2023.108942
- Gismondo, Drago, L.; Lombardi, A. (1999): Review of probiotics available to modify gastrointestinal flora. International Journal of Antimicrobial Agents, 12(4), 287–292. https://doi.org/10.1016/s0924-8579(99)00050-3
- Gong, L.; He, H.; Li, D.; Cao, L.; Khan, T.A.; Li, Y.; Pan, L.; Yan, L.; Ding, X.; Sun, Y.; Zhang, Y.; Yi, G.; Hu, S.; Xia, L. (2019): A New Isolate of Pediococcus pentosaceus (SL001) With Antibacterial Activity Against Fish Pathogens and Potency in Facilitating the Immunity and Growth Performance of Grass Carps. Frontiers in Microbiology, 10, 456111. https://doi.org/10.3389/fmicb.2019.01384
- Hasan, K.N.; Banerjee, G. (2020): Recent studies on probiotics as beneficial mediator in aquaculture: A review. The Journal of Basic and Applied Zoology, 81(1), 1–16. https://doi.org/10.1186/s41936-020-00190-y
- Havenaar, R.; Brink, B.T.; Huis In ’t Veld, J.H.J. (1992): Selection of strains for probiotic use. In: Probiotics. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2364-8_9
- Hendam, B.M.; Munir, M.B.; Eissa, M.E.; El-Haroun, E.; Van Doan, H.; Chung, T.H.; Eissa, E.H. (2023): Effects of water additive probiotic, Pediococcus acidilactici on growth performance, feed utilization, hematology, gene expression and disease resistance against Aspergillus flavus of Nile tilapia (Oreochromis niloticus). Animal Feed Science and Technology, 303, 115696. https://doi.org/10.1016/j.anifeedsci.2023.115696
- Hines, I.S.; Santiago-Morales, K.D.; Ferguson, C.S.; Clarington, J.; Thompson, M.; Rauschenbach, M.; … Stevens, A.M. (2022): Steelhead trout (Oncorhynchus mykiss) fed probiotic during the earliest developmental stages have enhanced growth rates and intestinal microbiome bacterial diversity. Frontiers in Marine Science, 9. https://doi.org/10.3389/fmars.2022.1021647
- Huang, J.; Wu, Y.; Chi, S. (2014): Dietary supplementation of Pediococcus pentosaceus enhances innate immunity, physiological health and resistance to Vibrio anguillarum in orange-spotted grouper (Epinephelus coioides). Fish & Shellfish Immunology, 39(2), 196–205. https://doi.org/10.1016/j.fsi.2014.05.003
- Kari, Z.A.; Kabir, M.A.; Dawood, M.A.; Razab, M.K.a.A.; Ariff, N.S.N.A.; Sarkar, T.; Pati, S.; Edinur, H.A.; Mat, K.; Ismail, T.A.; Wei, L.S. (2022): Effect of fish meal substitution with fermented soy pulp on growth performance, digestive enzyme, amino acid profile, and immune-related gene expression of African catfish (Clarias gariepinus). Aquaculture, 546, 737418. https://doi.org/10.1016/j.aquaculture.2021.737418
- Kousha, M.; Yeganeh, S.; Amirkolaie, A.K. (2020): Synergistic effect of sodium selenite and Pediococcus acidilactici on growth, intestinal bacterial counts, selenium bioavailability, hepatic enzymes and non-specific immune response in rainbow trout (Oncorhynchus mykiss). Aquaculture Nutrition, 26(1), 74–87. https://doi.org/10.1111/anu.12968
- Kumar, R.; Mukherjee, S.C.; Prasad, K.P.; Pal, A.K. (2006): Evaluation of Bacillus subtilis as a probiotic to Indian major carp Labeo rohita (Ham.). Aquaculture Research, 37(12), 1215–1221. https://doi.org/10.1111/j.1365-2109.2006.01551.x
- Lewbart, G.A. (2001): Bacteria and ornamental fish. Seminars in Avian and Exotic Pet Medicine 10:48–56. https://doi.org/10.1053/saep.2001. 19543
- Merrifield, D.L.; Dimitroglou, A.; Foey, A.; Davies, S.J.; Baker, R.T.; Bøgwald, J.; Castex, M.; Ringø, E. (2010): The current status and future focus of probiotic and prebiotic applications for salmonids. Aquaculture, 302(1–2), 1–18. https://doi.org/10.1016/j.aquaculture.2010.02.007
- Mitsuwan, W.; Saengsawang, P.; Jeenkeawpieam, J.; Nissapatorn, V.; De Lourdes Pereira, M.; Kitpipit, W.; Thomrongsuwannakij, T.; Poothong, S.; Vimon, S. (2023): Development of a microencapsulated probiotic containing Pediococcus acidilactici WU222001 against avian pathogenic Escherichia coli. Veterinary World, 1131–1140. https://doi.org/10.14202/vetworld.2023.1131-1140
- Mujeeb Rahiman, K.M.; Jesmi, Y.; Thomas, A.P.; Mohamed Hatha, A.A. (2010): Probiotic effect of Bacillus NL110 and Vibrio NE17 on the survival, growth performance and immune response of Macrobrachium rosenbergii (de Man). Aquaculture Research, 41(9), e120-e134. https://doi.org/10.1111/j.1365-2109.2009.02473.x
- Nargesi, E.A.; Falahatkar, B.; Sajjadi, M.M. (2020): Dietary supplementation of probiotics and influence on feed efficiency, growth parameters and reproductive performance in female rainbow trout (Oncorhynchus mykiss) broodstock. Aquaculture Nutrition, 26(1), 98–108. https://doi.org/10.1111/anu.12970
- Newaj-Fyzul, A.; Austin, B. (2015): Probiotics, immunostimulants, plant products and oral vaccines, and their role as feed supplements in the control of bacterial fish diseases. Journal of Fish Diseases, 38(11), 937–955. https://doi.org/10.1111/jfd.12313
- Newaj-Fyzul, A.; Adesiyun, A.A.; Mutani, A.; Ramsubhag, A.; Brunt, J.; Austin, B. (2007): Bacillus subtilis AB1 controls Aeromonas infection in rainbow trout (Oncorhynchus mykiss, Walbaum). Journal of Applied Microbiology, 103(5), 1699–1706. https://doi.org/10.1111/j.1365-2672.2007.03402.x
- Opiyo, M.A.; Jumbe, J.; Ngugi, C.C.; Charo-Karisa, H. (2019): Different levels of probiotics affect growth, survival and body composition of Nile tilapia (Oreochromis niloticus) cultured in low input ponds. Scientific African, 4, e00103. https://doi.org/10.1016/j.sciaf.2019.e00103
- Ouwehand, A.C.; Salminen, S.; Isolauri, E.. (2002): Probiotics: an overview of benefi cial effects. Antonie Van Leeuwenhoek. 82: 279–289.
- Parker, R. (1974): Probiotics, the other half of the antibiotic story. Animal Nutr. Health 29, 4–8.
- Pinoargote, G.; Ravishankar, S. (2018): Evaluation of the efficacy of probiotics in vitro against Vibrio parahaemolyticus, causative agent of acute hepatopancreatic necrosis disease in shrimp. Journal of Probiotics &Amp; Health, 06(01). https://doi.org/10.4172/2329-8901.1000193
- Silva, E.F.; Soares, M.A.; Calazans, N.F.; Vogeley, J.L.; Soares, R.; Peixoto, S. (2012): Effect of probiotic (Bacillus spp.) addition during larvae and postlarvae culture of the white shrimp Litopenaeus vannamei. Aquaculture Research, 44(1), 13–21. https://doi.org/10.1111/j.1365-2109.2011.03001.x
- Skjermo, J.; Vadstein, O. (1999): Techniques for microbial control in the intensive rearing of marine larvae. Aquaculture, 177(1–4), 333–343. https://doi.org/10.1016/s0044-8486(99)00096-4
- Standen, B.; Rawling, M.; Davies, S.; Castex, M.; Foey, A.; Gioacchini, G.; Carnevali, O.; Merrifield, D. (2013): Probiotic Pediococcus acidilactici modulates both localised intestinal- and peripheral-immunity in tilapia (Oreochromis niloticus). Fish & Shellfish Immunology, 35(4), 1097–1104. https://doi.org/10.1016/j.fsi.2013.07.018
- Standen, B.T.; Rodiles, A.; Peggs, D.L. et al. (2015): Modulation of the intestinal microbiota and morphology of tilapia, Oreochromis niloticus, following the application of a multi-species probiotic. Appl Microbiol Biotechnol, 99, 8403–8417. https://doi.org/10.1007/s00253-015-6702-2
- Valipour, A.R.; Hamedi Shahraki, N.; Abdollahpour biria, H.; (2018): Effects of probiotic (Pediococcus acidilactici) on growth and survival of kutum (Rutilus kutum) fingerlings. Iranian Journal of Fisheries Sciences. 17(1) 35–46. DOI: 10.22092/IJFS.2018.11558 3.
- Vijayan, K.; Singh, I.B.; Jayaprakash, N.; Alavandi, S.; Pai, S.S.; Preetha, R.; Rajan, J.; Santiago, T. (2005): A brackishwater isolate of Pseudomonas PS-102, a potential antagonistic bacterium against pathogenic vibrios in penaeid and non-penaeid rearing systems. Aquaculture, 251(2–4), 192–200. https://doi.org/10.1016/j.aquaculture.2005.10.010
- Watts, J.; Schreier, H.; Lanska, L.; Hale, M. (2017): The rising tide of antimicrobial resistance in aquaculture: sources, sinks and solutions. Marine Drugs, 15(6), 158. https://doi.org/10.3390/md15060158
- Won, S.; Hamidoghli, A.; Choi, W.; Bae, J.; Jang, W.J.; Lee, S.; Bai, S.C. (2020): Evaluation of Potential Probiotics Bacillus subtilis WB60, Pediococcus pentosaceus, and Lactococcus lactis on Growth Performance, Immune Response, Gut Histology and Immune-Related Genes in Whiteleg Shrimp, Litopenaeus vannamei. Microorganisms, 8(2), 281. https://doi.org/10.3390/microorganisms8020281.
- Wu, Y.; Chu, Y.; Chen, Y.; Chang, C.; Lee, B.; Nan, F. (2022): Effects of dietary Lactobacillus reuteri and Pediococcus acidilactici on the cultured water qualities, the growth and non-specific immune responses of Penaeus vannamei. Fish & Shellfish Immunology, 127, 176–186. https://doi.org/10.1016/j.fsi.2022.06.004
- Zibiene, G.; Zibas, A. (2019): Impact of commercial probiotics on growth parameters of European catfish (Silurus glanis) and water quality in recirculating aquaculture systems. Aquacult Int, 27, 1751–1766. https://doi.org/10.1007/s10499-019-00428-9
https://doi.org/10.34101/actaagrar/1/15372