Articles

Utilization of live feeds in fish larviculture: A review

Published:
2025-12-02
Authors
View
Keywords
License

Copyright (c) 2025 by the Author(s)

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

How To Cite
Selected Style: APA
Teye-Gaga, C., Molnár, P. I. ., Mohammed, E. A. H. ., & Bársony, P. . (2025). Utilization of live feeds in fish larviculture: A review. Acta Agraria Debreceniensis, 2, 103-116. https://doi.org/10.34101/actaagrar/2/15985
Received 2025-08-09
Accepted 2025-11-07
Published 2025-12-02
Abstract

This review examines the significance of live feeds in commercial aquaculture industry for production of fish and shrimp larvae, along with various challenges and prospects. Live feeds are an essential food source in larviculture, especially for marine fish, which depend on them for nutrition during the initial days of exogenous feeding. They are palatable, highly digestible, and their movement stimulates natural hunting and foraging instincts, promoting better development, lowering captivity stress, and increasing survival rates. Artemia is the most commonly used live feed in larviculture; however, it has low levels of omega-3 HUFA. Copepods are the most nutritionally rich live feed, containing high levels of DHA and EPA. Despite these benefits, they are less frequently used in larviculture due to technical challenges associated with large-scale cultivation at high densities. The use of live feed is labour-intensive and costly. The feeding period for fish larvae can be shortened using a co-feeding strategy. Microalgae rich in DHA have been utilized to enrich live feeds. Further research is needed to determine the most effective approach to significantly reduce the weaning time of fish larvae from live feed. This will lead to gradual and eventual complete replacement of life feed in the near future.

References
  1. Abate, T.G.;, Nielsen, R.;, Nielsen, M.;, Jepsen, P.M.; Hansen, B.W. (2016): A cost-effectiveness analysis of live feeds in juvenile turbot Scophthalmus maximus (Linnaeus, 1758) farming: copepods versus Artemia. Aquaculture Nutrition, 22(4), 899–910. https://doi.org/10.1111/anu.12307
  2. Abdelghany, M.F.;, El-Sawy, H.B.; Abd El-hameed, S.A.A.; Khames, M.K.; Abdel-Latif, H.M.R.; Naiel, M.A.E. (2020): Effects of dietary Nannochloropsis oculata on growth performance, serum biochemical parameters, immune responses, and resistance against Aeromonas veronii challenge in Nile tilapia (Oreochromis niloticus). Fish and Shellfish Immunology, 107(PA), 277–288. https://doi.org/10.1016/j.fsi.2020.10.015
  3. Ajiboye, O.; Yakubu, A.F.; Adams, T.E.; Olaji, E.D.; Nwogu, N.A. (2011): A review of the use of copepods in marine fish larviculture. Reviews in Fish Biology and Fisheries, 21(2), 225–246. https://doi.org/10.1007/s11160-010-9169-3
  4. Alajmi, F.; Zeng, C. (2014): The effects of stocking density on key biological parameters influencing culture productivity of the calanoid copepod, Parvocalanus crassirostris. Aquaculture, 434, 201–207. https://doi.org/10.1016/j.aquaculture.2014.08.029
  5. Alajmi, F.; Zeng, C.; Jerry, D.R. (2014): Improvement in the reproductive productivity of the tropical calanoid copepod Parvocalanus crassirostris through selective breeding. Aquaculture, 420–421, 18–23. https://doi.org/10.1016/j.aquaculture.2013.10.031
  6. Baskerville-Bridges, B.; Kling, L.J. (2000): Early weaning of Atlantic cod (Gadus morhua) larvae onto a microparticulate diet. Aquaculture, 189(1–2), 109–117. https://doi.org/10.1016/S0044-8486(00)00356-2
  7. Becker, E.W. (1994): Microalgae: Biotechnology and Microbiology. Cambridge University Press.
  8. Becker E.W. (2007): Micro-algae as a source of protein. Biotechnol Adv 25(2):207–21
  9. Bell, J.G.; McEvoy, L.A.; Estevez, A.; Shields, R.J.; Sargent, J.R. (2003): Optimising lipid nutrition in first-feeding flatfish larvae. Aquaculture, 227(1–4), 211–220. https://doi.org/10.1016/S0044-8486(03)00504-0
  10. Bengtson, D.A.; Léger, P.; Sorgeloos, P. (1991): Use of Artemia as food source for aquaculture.pdf. In Artemia Biology (pp. 255–285).
  11. Borla, M.A.; Palecek, B.; Budick, S.; O’Malley, D.M. (2002): Feedcapture by larval zebrafish: Evidence for fine axial motor control. Brain, Behavior and Evolution, 60(4), 207–229. https://doi. org/10.1159/00006 6699
  12. Bromley, P.J.; Howell, B.R. (1983): Factors influencing the survival and growth of turbot larvae, Scophthalmus maximus L., during the change from live to compound feeds. Aquaculture, 31(1), 31–40. https://doi.org/10.1016/0044-8486(83)90255-7
  13. Burbano, M.F.; Torres, G.A.; Prieto, M.J.; Gamboa, J.H.; Chapman, F.A. (2020): Increased survival of larval spotted rose snapper Lutjanus guttatus (Steindachner, 1869) when fed with the copepod Cyclopina sp. and Artemia nauplii. Aquaculture, 519 (December 2019), 734912. https://doi.org/10.1016/j.aquaculture.2019.734912
  14. Cahu, C.L.; Zambonino, J.L. (1994): Larvae With a Compound Diet: Effect on Digestive Enzymes. Science, 109(2), 213–222.
  15. Cahu, C.; Zambonino Infante, J. (2001): Substitution of live food by formulated diets in marine fish larvae. Aquaculture, 200(1–2), 161–180. https://doi.org/10.1016/S0044-8486(01)00699-8
  16. Cahu, C.; Zambonino Infante, J.L.; Barbosa V. (2003): Effect of dietary phospholipid level and phospholipid:neutral lipid value on the development of sea bass (Dicentrarchus labrax) larvae fed a compound diet. Br. J. Nutr. 90 (1): 21–28.
  17. Cheban, L.; Hrynko, O.; Marchenko, M. (2017): Nutritional value of Daphnia magna (Straus, 1820) under conditions of co‐cultivation with fodder microalgae. Biolohichni systemy, 9. https ://doi.org/10.31861/ biosystems 2017.02.166
  18. Chen, C.Y.; Zhao, X.Q.; Yen, H.W.; Ho, S.H.; Cheng C.L.; Lee, D.J., Bai, F.W.; Chang J.S. (2013): Microalgae-based carbohydrates for biofuel production. Biochem Eng J 78:1–10
  19. Cavrois-Rogacki, T.; Drabikova, L.; Migaud, H.; Davie, A. (2021): Deformities prevalence in farmed ballan wrasse (Labrus bergylta) in relation to hatchery origin and life stage. Aquaculture, 533(November 2020). https://doi.org/10.1016/j.aquaculture.2020.736212
  20. Conceição, L.E.C.; Yúfera, M.; Makridis, P.; Morais, S.; Dinis, M.T. (2010): Live feeds for early stages of fish rearing. Aquaculture Research, 41(5), 613–640. https://doi.org/10.1111/j.1365-2109.2009.02242.x
  21. Davis, D.; Nguyen, T.; Li, M.; Gatlin, D.M.; O’Keefe, T. (2009): Advances in aquaculture nutrition: catfish, tilapia and carp nutrition. In New Technologies in Aquaculture (pp. 440–458). https://doi.org/10.1533/9781845696474.3.440
  22. Dhert, P.; King, N.; O’Brien, E. (2014): Stand-alone live food diets, an alternative to culture and enrichment diets for rotifers. Aquaculture, 431, 59–64. https://doi.org/10.1016/j.aquaculture.2014.04.021
  23. Dhont, J.; Van Stappen, G. (2003): In: Støttrup, J.G.; McEvoy, L. (eds). Live Feeds in Marine Aquaculture. Blackwell publishing, Oxford, pp 65–111.
  24. Drillet, G.; Frouël, S.; Sichlau, M.H.; Jepsen, P.M.; Højgaard, J.K.; Joardeer, A.K.; Hansen, B.W. (2011): Status and recommendations on marine copepod cultivation for use as live feed. Aquaculture, 315(3–4), 155–166. https://doi.org/10.1016/j.aquaculture.2011.02.027
  25. El-Dahhar, A.A.; Rashwan, S.R.; El-Zaeem, S.Y.; Shahim S.A.; Mourad, M.M.; Basuini, M.F.E. (2024): Evaluation of the nutritional value of Artemia nauplii for European seabass (Dicentrarchus labrax) larvae. Aquaculture and Fisheries 9, 78–84. https://doi.org/10.1016/j.aaf.2022.03.014
  26. Evjemo, J.O.; Reitan, K.I.; Olsen, Y. (2003): Copepods as live food organisms in the larval rearing of halibut larvae (Hippoglossus hippoglossus L.) with special emphasis on the nutritional value. Aquaculture, 227(1–4), 191–210. https://doi.org/10.1016/S0044-8486(03)00503-9
  27. Fabrikov, D.; Barroso, F.G.; Sánchez-Muros, M.J.; Hidalgo, M.C.; Cardenete, G.; Tomas-Almenar, C.; Guil-Guerrero, J.L. (2021): Effect of feeding with insect meal diet on the fatty acid compositions of sea bream (Sparus aurata), tench (Tinca tinca) and rainbow trout (Oncorhynchus mykiss) fillets. Aquaculture, 545, 737170.
  28. Fadl, S.E.; ElGohary, M.S.; Elsadany, A.Y.; Gad, D.M.; Hanaa, F.F.; El-Habashi, N.M. (2017): Contribution of microalgae-enriched fodder for the Nile tilapia to growth and resistance to infection with Aeromonas hydrophila. Algal Research, 27(May), 82–88. https://doi.org/10.1016/j.algal.2017.08.022
  29. FAO (2020): The state of Word Fisheries and Aquaculture. Food and Agriculture Organization of the United Nations (FAO). Rome, Italy.
  30. Faruk, M.; Anka, I. (2017): An overview of diseases in fish hatcheries and nurseries. Fundamental and Applied Agriculture, 2(3), 311. https://doi.org/10.5455/faa.277539
  31. Fehér, M.; Baranyai, E.; Simon, E.; Bársony, P.; Szucs, I.; Posta, J.; Stündl, L. (2013): The interactive effect of cobalt enrichment in Artemia on the survival and larval growth of barramundi, Lates calcarifer. Aquaculture, 414–415, 92–99. https://doi.org/10.1016/j.aquaculture.2013.07.031
  32. Fosse, P.J.; Mattos, D. da C.; Cardoso, L.D.; Radael, M.C.; Filho, J.C.F.; Júnior, M.V.V. (2018): Duration of co-feeding on the Nishikigoi Cyprinus carpio larvae during weaning from live to inert food in an indoor system. Ciencia Rural, 48(4), 1–9. https://doi.org/10.1590/0103-8478cr20170579
  33. Gapasin, R.S.J.; Duray, M.N. (2001): Effects of DHA-enriched live food on growth, survival and incidence of opercular deformities in milkfish (Chanos chanos). Aquaculture, 193(1–2), 49–63. https://doi.org/10.1016/S0044-8486(00)00469-5
  34. Garcia Ortega, A.; Verreth, J.A.J.; Coutteau, P.; Segner, H.; Huisman, E.A.; Sorgeloos, P. (1998): Biochemical and enzymatic characterization of decapsulated cysts and nauplii of the brine shrimp Artemia at different developmental stages. Aquaculture 161, 501–514.
  35. Gisbert, E.; Villeneuve, L.; Zambonino-Infante, J.L.; Quazuguel, P.; Cahu, C.L. (2005): Dietary phospholipids are more efficient than neutral lipids for long-chain polyunsaturated fatty acid supply in European sea bass Dicentrarchus labrax larval development. Lipids 40, 609–618. https://doi.org/10.1007/s11745-005-1422-0.
  36. Gladyshev, M.I.; Makhutova, O.N.; Kravchuk, E.S.; Anishchenko, O.V.; Sushchik, N.N. (2016): Stable isotope fractionation of fatty acids of Daphnia fed laboratory cultures of microalgae. Limnologica‐Ecology and Management of Inland Waters, 56, 23–29.
  37. Glencross, B.; Irvin, S.; Arnold, S.; Blyth, D.; Bourne, N.; Preston, N. (2014): Effective use of microbial biomass products to facilitate the complete replacement of fishery resources in diets for the black tiger shrimp, Penaeus monodon. Aquaculture, 431, 12–19. https://doi.org/10.1016/j.aquaculture.2014.02.033
  38. Glencross, B.D.; Huyben, D.; Schrama, J.W. (2020): The application of single-cell ingredients in aquaculture feeds—a review. Fishes, 5(3), 1–39. https://doi.org/10.3390/fishes5030022
  39. Hamre, K.; Mollan, T.A.; Sæle, Ø.; Erstad, B. (2008): Rotifers enriched with iodine and selenium increase survival in Atlantic (Gadus morhua) cod larvae. Aquaculture 284, 190–195.
  40. Hamre, K.; Erstad, B.; Harboe, T. (2019): Early weaning of Atlantic halibut (Hippoglossus hippoglossus) larvae. Aquaculture, 502 (June 2018), 268–271. https://doi.org/10.1016/j.aquaculture.2018.12.060
  41. Hamre, K.; Yúfera, M.; Rønnestad, I.; Boglione, C.; Conceição, L.E.C.; Izquierdo, M. (2013): Fish larval nutrition and feed formulation: Knowledge gaps and bottlenecks for advances in larval rearing. Reviews in Aquaculture, 5(SUPPL.1). https://doi.org/10.1111/j.1753-5131.2012.01086.x
  42. Henry, M.; Gasco, L.; Piccolo, G.; Fountoulaki, E. (2015): Review on the use of insects in the diet of farmed fish: Past and future. Animal Feed Science and Technology, 203(1), 1–22. https://doi.org/10.1016/j.anifeedsci.2015.03.001
  43. Hauville, M.R.; Zambonino-Infante, J.L.; Bell, G.; Migaud, H.; Main, K.L. (2014): Impacts of three different microdiets on Florida Pompano, Trachinotus carolinus, weaning success, growth, fatty acid incorporation and enzyme activity. Aquaculture, 422–423, 268–276. https://doi.org/10.1016/j.aquaculture.2013.12.006
  44. Hawkyard, M.; Laurel, B.; Langdon, C. (2014): Rotifers enriched with taurine by microparticulate and dissolved enrichment methods influence the growth and metamorphic development of northern rock sole (Lepidopsetta polyxystra) larvae. Aquaculture, 424–425, 151–157. https://doi.org/10.1016/j.aquaculture.2013.12.035
  45. He, Y.; Lin, G.; Rao, X.; Chen, L.; Jian, H.; Wang, M.; Guo, Z.; Chen, B. (2018): Microalga Isochrysis galbana in feed for (Trachinotus ovatus): Effect on growth performance and fatty acid composition of fish fillet and liver. Aquac Int 26(5):1261–1280
  46. Herath, S.S.; Atapaththu, K.S.S. (2013): Sudden weaning of angel fish pterophyllum scalare (Lichtenstein) (Pisces; Cichlidae) larvae from brine shrimp (Artemia sp) nauplii to formulated larval feed. Springer Plus, 2(1), 1–7. https://doi.org/10.1186/2193-1801-2-102
  47. Hoestenberghe, V.S.; Wille, M.; De Swaef, E.; Goddeeris, B.M.; Nevejan, N. (2015): Effect of weaning age and the use of different sized Artemia nauplii as first feed for jade perch (Scortum barcoo). Aquaculture International, 23(6), 1539–1552. https://doi.org/10.1007/s10499-015-9903-x
  48. Hoffmann, L.; Rawski, M.; Pruszyńska-Oszmałek, E.; Kołodziejski, P.; Mazurkiewicz, J. (2021): Environmentally sustainable feeding system for sea trout (Salmo trutta m. trutta): Live food and insect meal-based diets in larval rearing. Aquaculture Reports, 21(July). https://doi.org/10.1016/j.aqrep.2021.100795
  49. Holt, G.J. (Ed) (2011): Larval fish nutrition. Wiley-Blackwell Publication, Oxford, UK. https://doi.org/10.1002/9780470959862
  50. Hou, L.; Bi, X.; Zou, X.; He, C.; Yang, L.; Qu, R.; Liu, Z.W.(2006): Molecular systematics of bisexual Artemia populations. Aquaculture Research 37, 671–680.
  51. Imentai, A.; Rašković, B.; Steinbach, C.; Rahimnejad, S.; Yanes-Roca, C.; Policar, T. (2020): Effects of first feeding regime on growth performance, survival rate and development of digestive system in pikeperch (Sander lucioperca) larvae. Aquaculture, 529(May). https://doi.org/10.1016/j.aquaculture.2020.735636
  52. Jaseera, K.V.; Ebeneezar, S.; Sayool, P.; Nair, A.V.; Kaladharan, P. (2021): Dietary supplementation of microalgae, Aurantiochytrium sp. and co-feeding with Artemia enhances the growth, stress tolerance and survival in Penaeus monodon (Fabricius, 1798) post larvae. Aquaculture, 533(November 2020), 736176. https://doi.org/10.1016/j.aquaculture.2020.736176
  53. Jobling, M. (2016): Fish nutrition research: past, present and future. Aquacult Int. 24:767–786. DOI 10.1007/s10499-014-9875-2
  54. Jomori, R.K.; Ducatti, C.; Carneiro, D.J.; Portella, M.C. (2008): Stable carbon (δ13C) and nitrogen (δ15N) isotopes as natural indicators of live and dry food in Piaractus mesopotamicus (Holmberg, 1887) larval tissue. Aquaculture Research, 39(4), 370–381. https://doi.org/10.1111/j.1365-2109.2007.01760.x
  55. Karakatsouli, N.; Batzina, A.; Ntomalis, K.; Panopoulos, S.; Coli, A.; Geropanagioti, E.; Anastasiadou, C.; Rati, M.; Bantounas, S. (2021): Co-feeding dry and live feed in first-feeding gilthead seabream: Effects on functional development of the digestive system, larvae and postlarvae performance. Aquaculture Nutrition, 27(6), 2555–2566. https://doi.org/10.1111/anu.13384
  56. Kent, M.; Welladsen, H.M.; Mangott, A.; Li, Y. (2015): Nutritional evaluation of Australian microalgae as potential human health supplements. PLoS One 10(2):e0118985
  57. Khoa, T.; Waqalevu, V.; Honda, A.; Shiozaki, K.; Kotani, T. (2020): Comparative study on early digestive enzyme activity and expres- sion in red sea bream (Pagrus major) fed on live feed and micro- diet. Aquaculture, 519, 734721
  58. Kjørsvik, E.; Hoehne-Reitan, K.; Reitan, K.I. (2003): Egg and larval quality criteria as predictive measures for juvenile production in turbot (Scophthalmus maximus L.). Aquaculture, 227(1–4), 9–20. https://doi.org/10.1016/S0044-8486(03)00492-7
  59. Kjørsvik, E.; Olsen, C.;, Wold, P.A.; Hoehne-Reitan, K.; Cahu, C.L.; Rainuzzo, J.; Olsen, A.I.; Øie, G.; Olsen, Y. (2009): Comparison of dietary phospholipids and neutral lipids on skeletal development and fatty acid composition in Atlantic cod (Gadus morhua). Aquaculture, 294(3–4), 246–255. https://doi.org/10.1016/j.aquaculture.2009.06.012
  60. Kolkovski, S. (2001): Digestive enzymes in fish larvae and juveniles. Implications and applications to formulated diet. Aquaculture, 200, 181–201.
  61. Kroeckel, S.; Harjes, A.-G.E.; Roth, I.; Wuertz, S.;Susenbeth, A.; Schulz, C.; Kiel, C. 98 (2012): When a turbot catches a fly: Evaluation of a pre-pupae meal of the Black Soldier Fly (Hermetia illucens) as a fish meal substitute. Aquaculture, 364–365(April 2015). https://doi.org/10.1016/j.aquaculture.2012.08.041
  62. Kumar, S.; Srivastava, A.; Chakrabarti, R. (2005): Study of digestive proteinases and proteinase inhibitors of Daphnia carinata. Aquaculture, 243(1–4), 367–372. https://doi.org/10.1016/j.aquaculture.2004.10.011
  63. Kundu, S.; Dasgupta, N.; Chakraborty, B.; Paul, A.; Ray, S.; Bhattacharya, S. (2021): Growth acceleration is the key for identifying the most favorable food concentration of Artemia sp. Ecological Modelling, 455(May). https://doi.org/10.1016/j.ecolmodel.2021.109639
  64. Lahnsteiner, F.; Kletzl, M. (2018): A method for rearing perch, Perca fluviatilis, larvae using Paramecium caudatum, followed by wild zooplankton and formulated dry feed in combination with adequate tank systems. J. Agricult. Sci., 10, 26–42.
  65. Lahnsteiner, F.; Lahnsteiner, E.; Duenser, A. (2023): Suitability of Different Live Feed for First Feeding of Freshwater Fish Larvae. Aquaculture Journal, 3(2), 107–120. https://doi.org/10.3390/aquacj3020010
  66. Lavens, P.; Sorgeloos, P. (1996): Manual on the production and use of live food for aquaculture. FAO Fisheries Technical Paper No. 361, pp. 45–295.
  67. Léger, P.; Bengtson, D.A.; Sorgeloos, P.; Simpson, K.L.; Beck, A.D. (1987): The nutritional value of Artemia: A Review: In: Sorgeloos, P., Bengtson, D.A., Decleir, W., Jaspers, E. (Eds.), Artemia Research and its Applications, vol. 3. Universa Press, Wetteren, Belgium. 357–372.
  68. Léger, P.; Sorgeloos, P. (1991): Optimized feeding regimes in shrimp hatcheries. In: Fast, A.W., Lester, L.J. (Eds.). Culture of Marine Shrimp: Principles and Practices. Elsevier.
  69. Leung, Y.F.J. (2009): Reproduction of the zooplankton, Daphnia carinata and Moina australiensis: Implications as live food for aquaculture and utilization of nutrient loads in effluent. PhD Thesis. University of Adelaide. https://digital.library.adelaide.edu.au/dspace/bitstream/2440/62460/8/02whole.pdf
  70. Lim, C.; Webster, C. (2008): Tilapia: Biology, Culture and Nutrition. African Journal of Aquatic Science, 33(1), 103–103. https://doi.org/10.2989/AJAS.2008.33.1.14.415
  71. Lim, L.C.; Dhert, P.; Sorgeloos, P. (2003): Recent developments in the application of live feeds in the freshwater ornamental fish culture. Aquaculture, 227(1–4), 319–331. https://doi.org/10.1016/S0044-8486(03)00512-X
  72. Ljubobratović, U.; Kucska, B.; Feledi, T.; Poleksić, V.; Marković, Z.; Lenhardt, M.; Peteri, A.; Kumar, S.; Rónyai, A. (2015): Effect of weaning strategies on growth and survival of pikeperch, Sander lucioperca, larvae. Turk. J. Fish. Aquat. 15, 327–333. https://doi. org/10.4194/1303-2712-v15_2_15
  73. Ljubobratovic, U.; Kosanovic, D.; Demény, F.Z.; Krajcsovics, A.; Vukotic, G.; Stanisavljevic, N.; Golic, N.; Jeney, G.; Lukic, J. (2020): The effect of live and inert feed treatment with lactobacilli on weaning success in intensively reared pike-perch larvae. Aquaculture, 516 (August 2019), 734608. https://doi.org/10.1016/j.aquaculture.2019.734608
  74. Lock, E.R.; Arsiwalla, T.; Waagbø, R. (2016): Insect larvae meal as an alternative source of nutrients in the diet of Atlantic salmon (Salmo salar) postsmolt. Aquac. Nutr. 22, 1202–1213.
  75. Mæhre, H.K.; Hamre, K.; Elvevoll, E.O. (2012): Nutrient evaluation of rotifers and zooplankton: feed for marine fish larvae. Aquac. Nutr. 19, 301–311.
  76. Malla, S.; Banik, S. (2015). Production and application of live food organisms for freshwater ornamental fish Larviculture. Adv. Biores, 6(1), 159–167. https://doi.org/10.15515/abr.0976-4585.6.1.159167
  77. Mai, M.G.; Engrola, S.; Morais, S.; Portella, M.C.; Verani, J.R.; Dinis, M.T.; Conceição, L.E.C. (2010): Co-feeding of live feed and inert diet from first-feeding affects Artemia lipid digestibility and retention in Senegalese sole (Solea senegalensis) larvae. Aquaculture, 296, 284–291. https://doi.org/10.1016/j.aquaculture.2009.08.024
  78. Martins, G.; Diogo, P.; Pinto, W.; Gavaia, P.J. (2019): Early Transition to Microdiets Improves Growth, Reproductive Performance and Reduces Skeletal Anomalies in Zebrafish (Danio rerio). Zebrafish. Jun 2019.300–307. http://doi.org/10.1089/zeb.2018.1691
  79. Mazorra, C.; Bruce, M.; Bell, J.G.; Davie, A.; Alorend, E.; Jordan, N.; Rees, J.; Papanikos, N.; Porter, M.; Bromage, N. (2003): Dietary lipid enhancement of broodstock reproductive performance and egg and larval quality in Atlantic halibut (Hippoglossus hippoglossus). Aquaculture, 227(1–4), 21–33. https://doi.org/10.1016/S0044-8486(03)00493-9
  80. van der Meeren, T.; Olsen, R.E.; Hamre, K.; Fyhn, H.J. (2008): Biochemical composition of copepods for evaluation of feed quality in production of juvenile marine fish. Aquaculture, 274(2–4), 375–397. https://doi.org/10.1016/j.aquaculture.2007.11.041
  81. Merrifield, D., Ringø, E (eds) (2014). Aquaculture Nutrition: Gut Health, Probiotics and Prebiotics. Wiley, Chichester
  82. Mjoun, K.; Rosentrater, K.A.; Brown, M.L. (2010): Tilapia: Environmental Biology and Nutritional Requirements. Fact Sheets. 963-02, (1975), 7. Retrieved from https://pubstorage.sdstate.edu/AgBio_Publications/articles/FS963-02.pdf
  83. Moughan, P.A.; Hendriks, W.H. (Eds) (2018): Feed Evaluation Science. Wageningen Academic Publishers, The Netherland.
  84. Mourente, G.; Tocher, D.R. (1992): Effect of weaning onto a pelleted diet on docosahexaenoic acid (22:6n-3) levels in brain of developing turbot (Scophthalmus maximus L.) Aquaculture, 105 363–377.
  85. Mozanzadeh, M.T.; Bahabadi, M.N.; Morshedi, V.; Azodi, M.; Agh, N.; Gisbert, E. (2021): Weaning strategies affect larval performance in yellowfin seabream (Acanthopagrus latus). Aquaculture, 539 (March), 736673. https://doi.org/10.1016/j.aquaculture.2021.736673
  86. Nguyen, V.T.; Satoh, S.; Haga, Y.; Fushimi, H.; Kotani, T. (2008): Effect of zinc and manganese supplementation in Artemia on growth and vertebral deformity in red sea bream (Pagrus major) larvae. Aquaculture, 285(1–4), 184–192. https://doi.org/10.1016/j.aquaculture.2008.08.030
  87. Nielsen, R., Nielsen, M., Abate, T. G., Hansen, B. W., Jepsen, P. M., Nielsen, S. L., Støttrup, J. G., & Buchmann, K. (2017). The importance of live-feed traps – farming marine fish species. Aquaculture Research, 48(6), 2623–2641. https://doi.org/10.1111/are.13281
  88. NRC (National Research Council) (2011). Nutrition Requirements of Fish and Shrimp. In the National Academies Press.
  89. Nunes, A.J.P.; Sá, M.V.C.; Browdy, C.L.; Vazquez-Anon, M. (2014): Practical supplementation of shrimp and fish feeds with crystalline amino acids. Aquaculture, 431, 20–27. https://doi.org/10.1016/j.aquaculture.2014.04.003
  90. Øie, G.; Reitan, K.I.; Evjemo, J.O.; Støttrup, J.; Olsen, Y. (2011): Live Feeds. In: Holt, G.J. (Ed.) Larval Fish Nutrition. 11: pp. 307–334. https://doi.org/10.1002/9780470959862.ch11
  91. Ohs, C.L.; Cassiano, E.J.; Rhodes, A. (2010): Choosing an Appropriate Live Feed for Larviculture of Marine Fish. Edis, 2010(2), 1–7. https://doi.org/10.32473/edis-fa167-2009
  92. Olsen, A.I.; Olsen, Y.; Attramadal, Y.; Christie, K.; Birkbeck, T.H.; Skjermo, J.; Vadstein, O. (2000): Effects of short term feeding of microalgae on the bacterial flora associated with juvenile Artemia franciscana. Aquaculture, 190(1–2), 11–25. https://doi.org/10.1016/S0044-8486(00)00396-3
  93. Olsen, R. E., Henderson, R. J., & Pedersen, T. (1991). The influence of dietary lipid classes on the fatty acid composition of small cod Gadus morhua L. juveniles reared in an enclosure in northern Norway. Journal of Experimental Marine Biology and Ecology, 148(1), 59–76. https://doi.org/10.1016/0022-0981(91)90147-O
  94. Pacheco-Vega, J.M.; Gamboa-Delgado, J.; Alvarado-Ibarra, A.G.; Nieto-López, M.G.; Tapia-Salazar, M.; Cruz-Suárez, L.E. (2018): Nutritional contribution of fish meal and microalgal biomass produced from two endemic microalgae to the growth of shrimp Penaeus vannamei. Latin American Journal of Aquatic Research, 46(1), 53–62. https://doi.org/10.3856/vol46-issue1-fulltext-7
  95. Parma, L.; Bonaldo, A.; Massi, P.; Yúfera, M.; Martínez-Rodríguez, G.; Gatta, P.P. (2013): Different early weaning protocols in common sole (Solea solea L.) larvae: Implications on the performances and molecular ontogeny of digestive enzyme precursors. Aquaculture, 414–415, 26–35. https://doi.org/10.1016/j.aquaculture.2013.07.043
  96. Patil, V.; Reitan, K.; Mortensen, L.; Källqvist, T.; Olsen, Y.; Vogt, G.; Gislerød, H. (2005): Microalgae as a source of polyunsaturated fatty acids for aquaculture. Current Topics in Plant Biology, 6 (January 2018), 57–65.
  97. Person-Le Ruyet, J.; Alexandre, J.C.; Thebaud, U.; Mugnier, C. (1993): Marine fish larvae feeding: formulated diets or live feed? J. World Aquacult. Soc. 24, 211–224.
  98. Persoone, G.; Sorgeloos, P. (1980): General aspects of the ecology and biogeography of Artemia. In: Persoone, G. et al. (Ed.) The brine shrimp Artemia: Proceedings of the International Symposium on the brine shrimp Artemia salina, Corpus Christi, Texas, USA, August 20–23, 1979: 3. Ecology, culturing, use in aquaculture. pp. 3–24.
  99. Radhakrishnan, D.K.; AkbarAli, I.; Schmidt, B.V.; John, E.M.; Sivanpillai, S.; Thazhakot Vasunambesan, S. (2020): Improvement of nutritional quality of live feed for aquaculture: An overview. Aquaculture Research, 51(1), 1–17. https://doi.org/10.1111/are.14357
  100. Rajkumar, M.; Kumaraguru vasagam, K.P. (2006): Suitability of the copepod, Acartia clausi as a live feed for Seabass larvae (Lates calcarifer Bloch): Compared to traditional live-food organisms with special emphasis on the nutritional value. Aquaculture, 261(2), 649–658. https://doi.org/10.1016/j.aquaculture.2006.08.043
  101. Rasdi, N.W.; Arshad, A.; Ikhwanuddin, M.; Hagiwara, A.; Yusoff, F.M.; Azani, N. (2020): A review on the improvement of cladocera (Moina) nutrition as live food for aquaculture: Using valuable plankton fisheries resources. Journal of Environmental Biology, 41(5), 1239–1248. https://doi.org/10.22438/JEB/41/5(SI)/MS_16
  102. Rayner, T.A.; Jørgensen, N.O.G.; Blanda, E.; Wu, C.H.; Huang, C.C., Mortensen, J.; Hwang, J.S.; Hansen, B.W. (2015): Biochemical composition of the promising live feed tropical calanoid copepod Pseudodiaptomus annandalei (Sewell 1919) cultured in Taiwanese outdoor aquaculture ponds. Aquaculture, 441, 25–34. https://doi.org/10.1016/j.aquaculture.2015.01.034
  103. Rodriguez-Lazaro, J.; Ruiz-Muñoz, F. (2012): Chapter 1 - A General Introduction to Ostracods: Morphology, Distribution, Fossil Record and Applications. In D. J. Horne, J. A. Holmes, J. Rodriguez-Lazaro, & F. A. Viehberg (Eds.), Ostracoda as Proxies for Quaternary Climate Change. Vol. 17. pp. 1–14. Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-444-53636-5.00001-9
  104. Rogers, C. (2009): The use of Artemia spp. in aquaculture diet enrichment. In E. Abreu-Grobois, F. Olivera-Tapia, & E. E. Suárez-Morales (Eds.), Avances en el estudio de los Branchiopoda. 97–106.
  105. Roiha, I.S.; Analytiq, P. (2015): Bioencapsulation of florfenicol in Artemia franciscana and Brachionus plicatilis for treatment of bacterial diseases of Atlantic cod (Gadus morhua) and Atlantic halibut (Hippoglossus hippoglossus) larvae. Irja Sunde Roiha. March 2011. https://doi.org/10.13140/2.1.3966.2885
  106. Román-Padilla, J.; Rodríguez-Rúa, A.; Ponce, M.; Manchado, M.; Hachero-Cruzado, I. (2017): Effects of dietary lipid profile on larval performance and lipid management in Senegalese sole. Aquaculture, 468, 80–93. https://doi.org/10.1016/j.aquaculture.2016.10.005
  107. Rønnestad, I.; Thorsen, A.; Finn, R.N. (1999): Fish larval nutrition: A review of recent advances in the roles of amino acids. Aquaculture, 177(1–4), 201–216. https://doi.org/10.1016/S0044-8486(99)00082-4
  108. Rosenlund, G.; Stoss, J.; Talbot, C. (1997): Co-feeding marine fish larvae with inert and live diets. Aquaculture, 155(1–4), 183–191. https://doi.org/10.1016/S0044-8486(97)00116-6
  109. Samat, N.A.; Yusoff, F.M.; Rasdi, N.W.; Karim, M. (2020): Enhancement of live food nutritional status with essential nutrients for improving aquatic animal health: A review. Animals, 10(12), 1–27. https://doi.org/10.3390/ani10122457
  110. Santhosh, B.; Anil, M.K.; Muhammed Anzeer, F.; Aneesh, K.S.; Mijo, V.A.; Gopakumar, G.; Rani, M.Ge.; Gopalakrishnan, A.; Unnikrishnan, C. (Eds.). (2018): Culture techniques of marine copepods. ICAR-Central Marine Fisheries Research, Institute, Kochi, Kerala, India, 144pp.
  111. Sarker, P.K.; Gamble, M.M.; Kelson, S.; Kapuscinski, A.R. (2016): Nile tilapia (Oreochromis niloticus) show high digestibility of lipid and fatty acids from marine Schizochytrium sp. and of protein and essential amino acids from freshwater Spirulina sp. feed ingredients. Aquaculture Nutrition, 22(1), 109–119. https://doi.org/10.1111/anu.12230
  112. Shiau, S.Y. (2002): Tilapia, Oreochromis spp. In C.D. Webster and C.E. Lim (eds.) Nutrient Requirements and Feeding of Finfish for Aquaculture. CABI Publishing, Oxfordshire, 418. 273-292.
  113. Sherif, A.H.; Al-Sokary, E.T.; Rizk, W.F.; Mahfouz, M.E. (2020): Immune status of Oreochromis niloticus subjected to long-term lead nitrate exposure and a Arthrospira platensis treatment trial. Environmental Toxicology and Pharmacology, 76(February), 103352. https://doi.org/10.1016/j.etap.2020.103352
  114. Shields, R.J.; Lupatsch, I. (2012): Algae for Aquaculture and Animal Feed. Technology Assessment Theory and Practice for 21st Year, Issue 1, July 2012
  115. Sorgeloos, P.; Lavens, P.; Léger, P.; Tackaert, P.; Versichele, D. (1986): Manual for the culture of and use of brine shrimp Artemia in aquaculture. Manual prepared for the Belgian Administration for Development and Cooperation and FAO. Artemia Reference Center, Faculty of Agriculture, State University of Ghent, Belgium.
  116. Sorgeloos, P.; Dhert, P.; Candreva, P. (2001): Use of the brine shrimp, Artemia spp., in marine fish larviculture. Aquaculture Volume 200, Issues 1–2, pp. 147–159.
  117. Srivastava, A.; Hamre, K.; Stoss, J.; Chakrabarti, R.; Tonheim, S.K. (2006): Protein content and amino acid composition of the live feed rotifer (Brachionus plicatilis): With emphasis on the water soluble fraction. Aquaculture, 254(1), 534–543. https ://doi.org/10.1016/j. aquaculture.2005.11.01
  118. Støttrup J.G. (2003): Production and nutritional value of copepods. In: Live feeds in Marine Aquaculture. J. G. Støttrup and L. A. McEvoy (Eds), Blackwell Science, Oxford, p 318.
  119. Steenfeldt, S. (2015): Culture methods of pikeperch early life stages. In: Biology and Culture of Percid Fishes. Springer, pp. 295–312.
  120. Stefanakis, M.; Makridis, P.; Anastasopoulos, E.; Katerinopoulos, H.E. (2011): Antibacterial activity of essential oils from plants of the genus Origanum on the bacteria strains of the Vibrio group. In: Trends in Natural Products Research, PSE Young Scientists’ Meeting, 12 – 15 June 2011, Kolymvari, Crete, Book of Abstracts, p. 206
  121. Tang, B.G.; Chen, G.; Wu, Z.H. (2010): Application of a microdiet in cobia Rachycentron canadum (Linnaeus, 1766) larvae rearing. Aquacult. Res. 41, 315–320. https://doi. org/10.1111/j.1365-2109.2008.02098.x.
  122. Thackeray, S.J. (2022): Zooplankton Diversity and Variation Among Lakes. In T. Mehner & K. Tockner (Eds.), Encyclopedia of Inland Waters (Second Edition) (Second Edition, pp. 52–66). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-819166-8.00013-X
  123. Tocher, D.R.; Bendiksen, E.Å.; Campbell, P.J.; Bell, J.G. (2008): The role of phospholipids in nutrition and metabolism of teleost fish. Aquaculture 280, 21–34. https://doi.org/ 10.1016/j.aquaculture.2008.04.034.
  124. Vadstein, O.; Bergh, Ø.; Gatesoupe, F.J.; Galindo-Villegas, J.; Mulero, V.; Picchietti, S.; Scapigliati, G.; Makridis, P.; Olsen, Y.; Dierckens, K.; Defoirdt, T.; Boon, N.; De Schryver, P.; Bossier, P. (2013): Microbiology and immunology of fish larvae. Reviews in Aquaculture, 5(SUPPL.1). https://doi.org/10.1111/j.1753-5131.2012.01082.x
  125. Wallace, R.L.; Snell, T.W.; Smith, H.A. (2015): Chapter 13 - Phylum Rotifera. In J. H. Thorp & D. C. Rogers (Eds.), Thorp and Covich’s Freshwater Invertebrates (Fourth Edition) (Fourth Edi, pp. 225–271). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-385026-3.00013-9
  126. Wan-Mohtar, W.A.A.Q.I.; Ibrahim, M.F.; Rasdi, N.W., Zainorahim, N.; Taufek, N.M. (2022): Microorganisms as a sustainable aquafeed ingredient: A review. Aquaculture Research, 53(3), 746–766. https://doi.org/10.1111/are.15627
  127. Watanabe, T.; Kitajima, C.; Fujita, S. (1983): Nutritional values of live organisms used in Japan for mass propagation of fish: A review. Aquaculture, 34(1–2), 115–143. https://doi.org/10.1016/0044-8486(83)90296-X
  128. Watanabe, T.; Kiron, V.; Satoh, S. (1997): Trace minerals in fish nutrition. Aquaculture, 151(1–4), 185–207. https://doi.org/10.1016/S0044-8486(96)01503-7
  129. Wong, J.M.; Benzie, J.A.H. (2003): The effects of temperature, Artemia enrichment, stocking density and light on the growth of juvenile seahorses, Hippocampus whitei (Bleeker, 1855), from Australia. Aquaculture, 228(1–4), 107–121. https://doi.org/10.1016/S0044-8486(03)00320-X
  130. Xie, W.; Ma, Y.; Ren, B.; Gao, M.; Sui, L. (2021): Artemia nauplii enriched with archaea Halorubrum increased survival and challenge tolerance of Litopenaeus vannamei postlarvae. Aquaculture, 533, 736087. https://doi.org/10.1016/j.aquaculture.2020.736087
  131. Yanes-Roca, C.; Mráz, J.; Born-Torrijos, A.; Holzer, A.S.; Imentai, A.; Policar, T. (2018):Introduction of rotifers (Brachionus plicatilis) during pikeperch first feeding. Aquaculture, 497(March), 260–268. https://doi.org/10.1016/j.aquaculture.2018.08.004
  132. Zambonino-Infante, J.L.; Cahu, C.L. (2010): Effect of nutrition on marine fish development and quality. Recent Advances in Aquaculture Research, 103–124. http://archimer.ifremer.fr/doc/00086/19683/%5Cnhttp://archimer.ifremer.fr/doc/00086/19683/17306.pdf
  133. Zeng, C.; Shao, L.; Ricketts, A.; Moorhead, J. (2018): The importance of copepods as live feed for larval rearing of the green mandarin fish Synchiropus splendidus. Aquaculture, 491(January), 65–71. https://doi.org/10.1016/j.aquaculture.2018.03.011