Articles

Effects of cultivation practices and hybrid selection on endofusariosis and mycotoxin contamination in maize

Published:
2025-06-08
Authors
View
Keywords
License

Copyright (c) 2025 by the Author(s)

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

How To Cite
Selected Style: APA
Kecskés, I., Pál, K., Pápai, A., Bartók, T., Horváth, L., & Csótó, A. (2025). Effects of cultivation practices and hybrid selection on endofusariosis and mycotoxin contamination in maize. Acta Agraria Debreceniensis, 1, 69-78. https://doi.org/10.34101/actaagrar/1/15272
Received 2024-12-16
Accepted 2025-04-02
Published 2025-06-08
Abstract

The aim of this study was to determine the levels of deoxynivalenol (DON) and fumonisin mycotoxins in tillage and no-till systems in 2020 and 2021. Additionally, we sought to establish the levels of internal Fusarium infection in different tillage systems. We examined four tillage systems for two years (conventional tillage (plowing), conservation tillage, reduced tillage, and strip-till). The results indicate that toxin levels varied between the two years, with fumonisin production dominant in 2021, while DON toxin production was dominant in 2020. Regarding internal Fusarium infection, the lowest levels were observed in the plowing system in 2020, whereas in 2021, the lowest levels were measured in the reduced tillage system. Like the low DON levels in 2020, the plowing-based tillage system resulted in the lowest fumonisin levels in 2021. Throughout our experiment, the toxin levels were below the permissible limits for unprocessed corn, with DON levels under 1750 μg kg-1 and combined fumonisin B1 and B2 levels under 4000 μg kg-1. However, in areas where toxin contamination is typically problematic, considering the beneficial impact of plowing on reducing toxin contamination might be advisable when planning tillage.

 

References
  1. Bottalico, A (1998): Fusarium diseases of cereals: Species complex and related mycotoxin profiles in Europe. J of Plant Phatol. 80 (2) 85–103.
  2. Cervini, C.; Gallo, A.; Piemontese, L.; Magistà, D.; Logrieco, A.F.; Ferrara, M.; Solfrizzi, M.; Perrone, G. (2020): Effects of temperature and water activity change on ecophysiology of ochratoxigenic Aspergillus carbonarius in field-simulating conditions. International Journal of Food Microbiology, 315, https://doi.org/10.1016/j.ijfoodmicro.2019.108420 108420.
  3. Chibuogwu, M.O.; Groves, C.L.; Mueller, B.; Smith, D.L. (2024): Corn hybrid class impact on the presence of Fusarium graminearum and the concentration of Deoxynivalenol (DON) in ear and stalk parts. In BOOK OF CONFERENCE (p. 290). University of Benin.
  4. Crous, P.W.; Rossman, A.Y.; Aime, M.C.; Allen, W.C.; Burgess, T.; Groenewald, J.Z.; Castlebury, L.A. (2021): Names of Phytopathogenic Fungi: A Practical Guide. Phytopathology. 111(9). 1500–1508. https://doi.org/10.1094/PHYTO-11-20-0512-PER
  5. CTIC (Conservation Technology Information Center) 2009: Cropland roadside transect survey 2009: Procedures for using the cropland roadside transect survey for obtaining tillage/crop residue data. West Lafayette
  6. Dill-Macky, R.; Jones, R.K. (2000): The Effect of Previous Crop Residues and Tillage on Fusarium Head Blight of Wheat. Plant Disease, 84(1). 71–76. https://doi.org/10.1094/PDIS.2000.84.1.71
  7. Fernandez, M.R.; Zentner, R.P.; DePauw, R.M.; Gehl, D. (2008): Impacts of crop production factors on common root rot of barley in Eastern Saskatchewan. Crop Sci, 48(4), 1105–1117. https://doi.org/10.2135/cropsci2006.09.0606
  8. Flett, B.C.; McLaren, N.W.; Wehner, F.C. (1998): Incidence of Ear Rot Pathogens Under Alternating Corn Tillage Practices. Plant Dis. 82. 7. 781–784. https://doi.org/10.1094/PDIS.1998.82.7.781
  9. Flett, B.C.; Wehner, F.C. (1991): Incidence of Stenocarpella and Fusarium Cob Rots in Monoculture Maize under Different Tillage Systems. J Phytopathol, 133. 4. 327–333. https://doi.org/10.1111/j.1439-0434.1991.tb00168.x
  10. Husti, I. (2015): A sávművelés néhány műszaki-ökonómiai kérdése hazánkban. Mezőgazdasági Technika. 61(8). 26–29.
  11. Kovács, F. (2010): Agrártermelés – Tápláléklánc – Mikotoxinok. 7-11. In: Aktualitások a mikotoxin kutatásban. (Szerk. Kovács M.) Agroinform Kiadó, Budapest. 156 p. ISBN 978-963-502-912-9
  12. Lanubile, A.; Ferrarini, A.; Maschietto, V.; Delledonne, M.; Marocco, A.; Bellin, D. (2017): Functional genomics of plant resistance to toxins and necrotrophic fungal pathogens. Front Plant Sci, 8, 1024.
  13. Marocco, A.; Gavazzi, C.; Pietri, A.; Tabagli, V. (2008): On fumonisin incidence in monoculture maize under no-till, conventional tillage and two nitrogen fertilisation levels. J Sci Food Agr. 88(7). 1217–1221. https://doi.org/10.1002/jsfa.3205
  14. Marocco, A.; Tabaglio, V.; Pietri, A.; Gavazzi, C. (2009): Monoculture Maize (Zea mays L.) Cropped Under Conventional Tillage, No-tillage and N Fertilization: (II) Fumonisin Incidence on Kernels. Ital J Agron. 4(3) 69–75. https://doi.org/10.4081/ija.2009.3.69
  15. Masibonge, G.; Jun, W.; Thobela, T.; Jie, G. (2015): Scientific understanding and effects on ear rot diseases in maize production: a review. International Journal of Soil and Crop Sciences. 3(4). 77–84.
  16. Mesterházy, Á.; Oláh, J.; Popp, J. (2020a). Losses in the grain supply chain: causes and solutions. Sustainability, 12(6), 2342. https://doi.org/10.3390/su12062342
  17. Munkvold, G.P.; Desjardins, A.E. (1997): Fumonisins in maize: can we reduce their occurrence? Plant Dis, 81(6), 556–565. https://doi.org/101094/pdis.1997.81.6.556
  18. Munkvold, G.P. (2003a): Epidemiology of Fusarium Diseases and their Mycotoxins in Maize Ears. Eur J Plant Pathol. 109(7). 705–713. https://doi.org/10.1023/A:1026078324268
  19. Munkvold G.P. (2003b): Cultural and genetic approaches to managing mycotoxins in maize. Annu Rev Phytopathol. 41(1). 99–116. https://doi.org/10.1146/annurev.phyto.41.052002.095510
  20. Nicolaisen, M.; Justesen, A.F.; Thrane, U. (2018): Discovery of Fusarium endophytes in maize leaves using next-generation sequencing. Fungal Biol- UK, 122(5), 436–441.
  21. Papavizas, G.C. (1967): Evaluation of various media and anti-microbial agents for isolation of Fusarium from soil. Phytophatology. 57. 8. 848–852.
  22. Pfordt, A.; Ramos Romero, L.; Ssciwek, S.; Karlovsky, P.; Von Tiedemann, A. (2020): Impact of Environmental Conditions and Agronomic Practices on the Prevalence of Fusarium Species Associated with Ear- and Stalk Rot in Maize. Pathogens. 9(3) 236. https://doi.org/10.3390/pathogens9030236
  23. Rasmussen, P.E.; Rohde, C.R. (1988). Long-term tillage and nitrogen fertilization effects on organic N and C in a semi-arid soil. Soil Sci. Soc. Am. J. 44, pp. 596–600. https://doi.org/10.2136/sssaj1988.03615995005200040041x
  24. Sayers, E.W.; Bolton, E.E.; Brister, J.R.; Canese, K.; Chan, J.; Comeau, D.C.; Connor, R.; Funk, K.; Kelly, C.; Kim, S.; Madej, T.; Marchler-Bauer, A.; Lanczycki, C.; Lathrop, S.; Lu, Z.; Thibaud-Nissen, F.; Murphy, T.; Phan, L.; Skripchenko, Y.; Tse, T.; Wang, J.; Williams, R.; Trawick, B.W.; Pruitt, K.D.; Sherry, S.T. (2022): Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 50(D1) D20–D26. https://doi.org/10.1093/nar/gkab1112
  25. Schaasfma, A.W.; Ilinic, L.T.; Miller, J.D.; Hooker, D.C. (2001): Agronomic considerations for reducing deoxynivalenol in wheat grain. Can J Plant Pathol. 23(3) 279–285. https://doi.org/10.1080/07060660109506941
  26. Serna-Saldivar, S.O. (Ed.) (2018): Corn: chemistry and technology. Elsevier.
  27. Simić, M.; Videnović, Ž.; Dolijanović, Ž.; Jug,D.–Dumanović, Ž. (2009). Maize growing under different tillage systems. 2nd International Scientific/Professional Conference, Agriculture in Nature and Environment Protection, Vukovar, 4th–6th June, pp. 62–67.
  28. Steinkellner, S.; Mayerhofer, V.S.; Langer, I. (2002): Influence of tillage on Fusarium spp. in Different Crop Rotation Systems. Mycotoxin Res. 18(1) 11–15. https://doi.org/10.1007/BF02946053
  29. Szeitzné Szabó, M. (2009): Gabonaalapú élelmiszerek fuzárium toxin szennyezettségének csökkentési lehetőségei. Magyar Élelmiszerbiztonsági Hivatal, Budapest, 33.
  30. Vári, E.; Pepó, P. (2011): Az agrotechnikai tényezők hatása a kukorica agronómiai tulajdonságaira tartamkísérletben. Növénytermelés. 60(4), 115–130. https://doi.org/10.1556/novenyterm.60.2011.4.6
  31. Wegulo, S.N.; Baenziger, P.S.; Hernandez Nopsa, J.; Bockus, W.W.; Hallen-Adams, H. (2015): Management of Fusarium head blight of wheat and barley. Crop Prot, 73, 100–107. https://doi.org/10.1016/j.cropro.2015.02.025
  32. White, T.J.; Bruns, T.D.; Lee, S.B.; Taylor, J.W. (1990): Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Pp. 315–322 In: PCR Protocols: A Guide to Methods and Applications, eds. Innis, M.A., D.H. Gelfand, J.J. Sninsky, and T.J. White. Academic Press, Inc., New York.
  33. Wu, F. (2007): Measuring the economic impacts of Fusarium toxins in animal feeds. Anim Feed Sci Tech. 137(3–4). 363–374. https://doi.org/10.1016/j.anifeedsci.2007.06.010
  34. Wu, F.; Miller, J.D.; Casman, E.A. (2021): The economic impact of mycotoxin contamination in corn. Agr Econ, 53(4), 478–495.