Articles

Does the Hooded Crow (Corvus cornix) harbour vancomycin-resistant enterococci in Hungary?

Published:
December 6, 2022
Authors
View
Keywords
License

Copyright (c) 2022 by the Author(s)

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

How To Cite
Selected Style: APA
Benmazouz, I., Kövér, L., & Kardos, G. (2022). Does the Hooded Crow (Corvus cornix) harbour vancomycin-resistant enterococci in Hungary? . Acta Agraria Debreceniensis, 2, 5-8. https://doi.org/10.34101/actaagrar/2/11523
Received 2022-10-16
Accepted 2022-10-24
Published 2022-12-06
Abstract

Vancomycin resistant enterococci (VRE) are high priority nosocomial bacteria with a potential for zoonotic transmission. Thus, its emergence outside health establishments is a major concern. In order to study the prevalence of VRE in wildlife, we collected 221 faecal samples from free-ranging Hooded Crow (Corvus cornix) from urban and rural habitats in Hungary, from March to August 2020. The screening for resistant enterococci was done using bile esculin azide (BEA) agar supplemented with Vancomycin, specific to the screening of VRE. None of the samples from either habitat types yielded VRE. It seems that Hooded Crows from Hungary do not necessarily constitute a reservoir of VREs at present. Nonetheless, a continuous surveillance of VRE in wildlife would be judicious.

References
  1. Abriouel, H.–Omar, N.B.–Molinos, A.C.–Lopez, R.L.–Grande, M.J.–Martinez-Viedma, P. -Ortega, E. –Martínez-Cañamero, M. –Galvez, A. (2008): Comparative analysis of genetic diversity and incidence of virulence factors and antibiotic resistance among enterococcal populations from raw fruit and vegetable foods, water and soil, and clinical samples. Int J Food Microbiol. 123:38e49.
  2. Ahmed, M.O.–Baptiste, K.E. (2018): Vancomycin-resistant enterococci: a review of antimicrobial resistance mechanisms and perspectives of human and animal health. Microbial Drug Resistance, 24(5), 590–606.
  3. Alroy, K.–Ellis, J.C. (2011): Pilot study of antimicrobial-resistant Escherichia coli in herring gulls (Larus argentatus) and wastewater in the Northeastern United States. J. Zoo. Wildl. Med. 42, 160–163.
  4. Ayobami, O.–Willrich, N.–Reuss, A.–Eckmanns, T.–Markwart, R. (2020): The ongoing challenge of vancomycin-resistant Enterococcus faecium and Enterococcus faecalis in Europe: an epidemiological analysis of bloodstream infections. Emerging Microbes and Infections, 9(1), 1180–1193.
  5. Bonnedahl, J.–Drobni, M.–Gauthier-Clerc, M.–Hernandez, J.–Granholm, S.–Kayser, Y.–Melhus, A. –Kahlmeter, G.–Waldenström, J.–Johansson, A.–Olsen, B. (2009): Dissemination of Escherichia coli with CTX-M type ESBL between humans and yellow-legged gulls in the south of France. PLoS One, 4(6): e5958, doi: 10.1371/journal.pone.0005958.
  6. Buetti, N.–Wassilew, N.–Rion, V.–Senn, L.–Gardiol, C.–Widmer, A.–Marschall, J. (2019): Emergence of vancomycin-resistant enterococci in Switzerland: a nation-wide survey. Antimicrobial Resistance and Infection Control, 8(1), 1–5.
  7. Bager, F.–Madsen, M.–Christensen, J.–Aarestrup, F.M. (1997): Avoparcin used as a growth promoter is associated with the occurrence of vancomycin-resistant Enterococcus faecium on Danish poultry and pig farms. Preventive veterinary medicine, 31(1–2), 95–112.
  8. Delpech, G.–Allende, L.G.–Sparo, M. (2019): Mobile genetic elements in vancomycin-resistant Enterococcus faecium population. In Pathogenic Bacteria. IntechOpen.
  9. Dolejska, M.–Cizek, A.–Literak, I. (2007): High prevalence of antimicrobial‐resistant genes and integrons in Escherichia coli isolates from black‐headed gulls in the Czech Republic. Journal of Applied Microbiology, 103(1), 11–19.
  10. Dombrádi, Z.–Dobay, O.–Nagy, K.–Kozák, A.–Dombrádi, V.–Szabó, J. (2012): Prevalence of vanC vancomycin-resistant enterococci in the teaching hospitals of the University of Debrecen, Hungary. Microbial Drug Resistance, 18(1), 47–51.
  11. Drobni, M.–Bonnedahl, J.–Hernandez, J.–Haemig, P.–Olsen, B. (2009): Vancomycin-resistant enterococci, point barrow, Alaska, USA. Emerging infectious diseases, 15(5), 838.
  12. Ferrazzi, V.–Moreno Martin, A.–Lelli, D.–Gallazzi, D.–Grilli, G. (2007): Microbiological and serological monitoring in hooded crow (Corvus corone cornix) in the region Lombardia, Italy. Italian Journal of Animal Science, 6(3), 309–312.
  13. Fiore, E.–Van Tyne, D.–Gilmore, M.S. (2019): Pathogenicity of Enterococci. Microbiol. Spectr. 7.
  14. Fisher, K.–Phillips, C. (2009): "The ecology, epidemiology and virulence of Enterococcus". Microbiology. 155 (Pt 6): 1749–57. doi:10.1099/mic.0.026385-0. PMID 19383684.
  15. Kövér, L.–Gyüre, P.–Balogh, P.–Huettmann, F.–Lengyel, S., and Juhász, L. (2015): Recent colonization and nest site selection of the Hooded Crow (Corvus corone cornix L.) in an urban environment. Landscape and Urban Planning, 133, 78–86.
  16. Kruse, H.–Johansen, B.K.–Rørvik, L.M.–Schaller, G. (1999): The use of avoparcin as a growth promoter and the occurrence of vancomycin-resistant Enterococcus species in Norwegian poultry and swine production. Microb Drug Resist. 5(2):135-9.
  17. Lanthier, M.–Scott, A.–Lapen, D.R.–Zhang, Y.–Topp, E. (2010): Frequency of virulence genes and antibiotic resistance in Enterococcus spp. isolates from wastewater and feces of domestic mammals and birds, and wildlife. Can J Microbiol 56: 715–729.
  18. Melegh, S.–Nyul, A.–Kovács, K.–Kovács, T.–Ghidán, Á.–Dombrádi, Z.–Szabó, J.–Berta, B.–Lesinszki, V.–Pászti, J.–Tóth, Á.–Mestyán, G. (2018): Dissemination of VanA-Type Enterococcus faecium Isolates in Hungary. Microbial
  19. Drug Resistance. 24(9), 1376:1390. http://doi.org/10.1089/mdr.2017.0296
  20. Nilsson, O.–Greko, C.H.–Bengtsson, B. (2009): Environmental contamination by vancomycin resistant enterococci (VRE) in Swedish broiler production. Acta Vet Scand 51: 49–55.
  21. Oravcova, V.–Ghosh, A.–Zurek, L.–Bardon, J.–Guenther, S.–Cizek, A.–Literak, I. (2013): Vancomycin‐resistant enterococci in rooks (Corvus frugilegus) wintering throughout Europe. Environmental microbiology, 15(2), 548–556.
  22. Oravcova, V.–Zurek, L.–Townsend, A.–Clark, A.B.–Ellis, J.C.–Cizek, A.–Literak, I. (2014): A merican crows as carriers of vancomycin‐resistant enterococci with vanA gene. Environmental microbiology, 16(4), 939–949.
  23. Oravcova, V.–Hadelova, D.–Literak, I. (2016): Vancomycin-resistant Enterococcus faecium with vanA gene isolated for the first time from wildlife in Slovakia. Veterinary microbiology, 194, 43–47.
  24. Oravcova, V.–Svec, P.–Literak, I. (2017): Vancomycin‐resistant enterococci with vanA and vanB genes in Australian gulls. Environmental microbiology reports, 9(3), 316–318.
  25. Pelletier Jr, L.L. (1996): Microbiology of the circulatory system. Medical Microbiology. 4th edition.
  26. Pomba, C.–Rantala, M.–Greko, C.–Baptiste, K.E.–Catry, B.–Van Duijkeren, E.–Mateus, A.–Moreno, M.A.–Pyörälä, S.–Ružauskas, M.–Sanders, P.–Teale, C.–Threlfall, E.J.–Kunsagi Z.–Torren-Edo, J.–Jukes, H.–Törneke, K. (2017): Public health risk of antimicrobial resistance transfer from companion animals, Journal of Antimicrobial Chemotherapy. 72(4), 957–968. https://doi.org/10.1093/jac/dkw481
  27. Radhouani, H.–Silva, N.–Poeta, P.–Torres, C.–Correia, S.–Igrejas, G. (2014): Potential impact of antimicrobial resistance in wildlife, environment and human health. Frontiers in microbiology, 5, 23.
  28. Radimersky, T.–Frolkova, P.–Janoszowska, D.–Dolejska, M.–Svec, P.–Roubalova, E.–Cikova, P.–Cizek, A.–Literak, I. (2010): Antibiotic resistance in faecal bacteria (Escherichia coli, Enterococcus spp.) in feral pigeons. Journal of Applied Microbiology, 109: 1687–1695. https://doi.org/10.1111/j.1365-2672.2010.04797.x
  29. Ramos, S.–Igrejas, G.–Rodrigues, J.–Capelo-Martinez, J.L.–Poeta, P. (2012): Genetic characterisation of antibiotic resistance and virulence factors in vanA-containing enterococci from cattle, sheep and pigs subsequent to the discontinuation of the use of avoparcin. The Veterinary Journal, 193(1), 301–303.
  30. Sato, G.–Oka, C.–Asagi, M.–Ishiguro, N. (1978): Detection of conjugative R plasmids conferring chloramphenicol resistance in Escherichia coli isolated from domestic and feral pigeons and crows. Zentralbl Bakteriol Orig A. 1978;241:407–17.
  31. Silva, N.–Igrejas, G.–Rodrigues, P.–Rodrigues, T.–Gonçalves, A.–Felgar, A.C.–Pacheco, R.–Gonçalves, D.–Cunha, R.–Patrícia Poeta (2011): Molecular characterization of vancomycin-resistant enterococci and extended-spectrum β-lactamase-containing Escherichia coli isolates in wild birds from the Azores Archipelago. Avian Pathology, 40(5), 473–479.
  32. DOI: 10.1080/03079457.2011.599061
  33. Simjee, S.–Jensen, L.B.–Donabedian, S.M.–Zervos, M.J. (2006): Enterococcus. In Antimicrobial Resistance in Bacteria of Animal Origin. F.M. Aarestrup (ed.). Washington, DC, USA: ASM Press, pp. 315–323.
  34. Sjölund, M.–Bonnedahl, J.–Hernandez, J.–Bengtsson, S.–Cederbrant, G.–Pinhassi, J.–Kahlmeter, G.–Olsen, B. (2008): Dissemination of multidrug-resistant bacteria into the Arctic. Emerg Infect Dis. 14(1):70-2. doi: 10.3201/eid1401.070704. PMID: 18258081; PMCID: PMC2600168.
  35. Ünal, N.–Bal, E.–Karagöz, A.–Altun, B.–Koçak, N. (2020): Detection of vancomycin-resistant enterococci in samples from broiler flocks and houses in Turkey. Acta Veterinaria Hungarica, 68(2), 117–122.
  36. Wada, Y.–Harun, A.B.–Yean, C.Y.–Zaidah, A.R.–Wada, Y. (2019): Vancomycin-resistant Enterococcus: Issues in human health, animal health, resistant mechanisms and the Malaysian paradox. Adv. Anim. Vet. Sci, 7(11), 1021–1034.
  37. Wada, Y.–Irekeola, A.A.–EAR., E.N.S.–Yusof, W.–Lih Huey, L.–Ladan Muhammad, S.–Harun, A.–Yean, C.Y.–Zaidah, A.R. (2021): Prevalence of Vancomycin-Resistant Enterococcus (VRE) in Companion Animals: The First Meta-Analysis and Systematic Review. Antibiotics, 10 (2), 138. https://doi.org/10.3390/antibiotics10020138
  38. Wang, J.–Ma, Z.B.–Zeng, Z.L.–Yang, X.W.–Huang, Y.–Liu, J.H. (2017): The role of wildlife (wild birds) in the global transmission of antimicrobial resistance genes. Zoological Research, 38(2), 55.
  39. Werner, G.–Neumann, B.–Weber, R.–Kresken, M.–Wendt, C.–Bender, J.K.–Becker, K.–Borgmann, S.–Diefenbach, A.–Hamprecht, A.–Hogardt, M.–Wichelhaus, T.–Kemp, V.–Huebner, N.–Kaasch, A.–Geginat, G.–Kohnen, W.–Menzer, A.–Krause, T.–Miethke, T.–Pranada, F.–Radojn, F.–Tobisch, S.–Jansen, V.–Regnath, T.–Bührlen, U.–Schneider-Brachert, W.–Schwarz, R.–Luemen, M.–Skov, R.–Thuermer, A.–von Baum, H.–Weig, M.–Uwe, G.–Zabel, L.–von Wulffen, H.–Döring, S. (2020): Thirty years of VRE in Germany–“expect the unexpected”: The view from the National Reference Centre for Staphylococci and Enterococci. Drug Resistance Updates, 53, 2020, 100732, ISSN 1368–7646. https://doi.org/10.1016/j.drup.2020.100732.
  40. Willems, R.J.–Top, J.–Van Santen, M.–Robinson, D.A.–Coque, T.M.–Baquero, F.–Grundmann, H.–Bonten, M.J. (2005): Emerg Infect Dis. 11(6):821-8.
  41. Wu, J.–Huang, Y.–Rao, D.–Zhang, Y.–Yang, K. (2018): Evidence for environmental dissemination of antibiotic resistance mediated by wild birds. Front. Microbiol. 9.