Keresés
Keresési eredmények
-
An Analytical Solution for the Two-Layered Composite Beam-Column with Interlayer Slip and Constant Axial Load
14-31Megtekintések száma:90The authors present an analytical solution for the two-layered composite beams with imperfect shear connections. The considered beam is simply supported at both ends. The beam is subjected to transverse and axial loads. The kinematic assumptions of the Euler-Bernoulli beam theory are used. The connection of the beam components is perfect in normal direction, but the axial displacement field may have jump. The shear axial force derived from the imperfect connection is proportional to the relative slip occurring between the layers. The determination of the analytical solution is based on the Fourier method. Two examples illustrate the application of the presented analytical method.
-
On the Torsional Rigidity of Orthotropic Beams with Rectangular Cross Section
25-30Megtekintések száma:97The paper deals with the torsional rigidity of homogenous and orthotropic beam with rectangular cross
section. The torsional rigidity of the considered beam is defined in the framework of the Saint-Venant theory of
uniform torsion. Exact and approximate solutions are given to the determination of the torsional rigidity. The shape
of cross section is determined which gives maximum value of the torsional rigidity for a given cross-sectional area.
The dependence of torsional rigidity as a function of the ratio shear moduli of beam is also studied. -
Neutral Inhomogeneity in Circular Cylinder Subjected to Axial Load on its Lateral Boundary
35-42Megtekintések száma:148In this paper we consider the problem of single circular elastic inhomogeneity embedded within a circular cylinder whose curved boundary surface is subjected to surface traction acting on axial direction. We investigate the displacement neutrality of the coupled system of host body and inclusion. Neutral inhomogeneity (inclusion) does not disturb the displacement, strain and stress fields in the host body. The deformation of the considered inhomogenneous cylinder is antiplane shear deformation.