Search

Published After
Published Before

Search Results

  • Finite Element Analysis of Cellular Structures Using Ansys
    197-204
    Views:
    203

    Additive manufacturing (AM) is a process in which the product is composed of overlapping layers of a material that is added using devices such as 3D printers. Its process has been evolving for decades and nowadays it can be used for several applications and with different materials. One modern usage is for medical and dental purposes. Since it became possible to print metal, it has been a good solution for bone implants, once it must be done with biomaterials and can now replicate the bone structure, for that unit cells should compose the implant. Both conditions are now possible to be achieved by AM, and the current study will analyze, using finite element method, the possibilities to create specimens for tests which the final product would result in a 3D printed bone implant.

  • Use of ANSYS Software for the Acetabular Cup Structure Analysis out of the Hip Implant
    1-6.
    Views:
    338

    Modelling the hip implant has been one of the most important researches over the past few decades. In addition, using the ANSYS software for this purpose is well-known procedure to understand the real reaction of the hip implant parts during the daily life of the installed part. This study is to focus on the practical part of the use of ANSYS software to analyse the performance of the hip implant through the feature of structure analysis available in the ANSYS. The research applies the static loads behaviour only with the help of the static structural analysis to view the advantages and the disadvantages of every design, which helps us estimate the implant’s behaviour. The study investigates the optimization of the acetabular cup using the lattice optimization along with the infill option available in the ANSYS software in order to optimize the stress and the fixture of the cup inside the pelvis.

  • Solid-Lattice Stem Optimization Design for Hip Implants
    39-46
    Views:
    378

    The goal of this study is analyzed and design a methodology to reduce stem mass, through topology and lattice optimization of a Ti-6Al-4V hip implant, meeting yield stress requirements. Four optimization cases were studied: Topology optimization (1), Lattice design 100% (2), Lattice design 50% (3), Lattice design 25% (4). Five load cases from a study were applied for each optimization cases: Combined (LC1), standing-up (LC2), standing (LC3), going up stairs (LC4), jogging (LC5). The optimized cases design reduced stem mass approximately by 30% (1), 5% (2) ,8% (3) and 2% (4), compared with the total stem hip Ti-6Al-4V implant.

  • Mechanical Design and Finite element Analysis for Acetabular cup
    23-35
    Views:
    101

    Hip replacements typically consist of a four-part piece. Our research will focus primarily on the acetabular component. Several different types of materials can be used when creating a hip replacement implant ranging from plastic to titanium. Different materials are used to accommodate for allergic reactions or circumventing potential health risks. Aside from the material, the size of the components plays a factor in terms of durability; a larger diameter head might avoid dislodgement though it could increase wear and tear on the stems through constant friction. A patient’s force applied to the hip replacement is usually measured through a number of physical assessments. Finite element analysis (FEA), a computer-based method of data observation, allows for us to accurately simulate hip forces and their impact on the hip replacements. Through this, it becomes easier to predict and calculate the performance of specific designs. Generative systems can also be used to support performance analysis and optimization through assessing a multitude of cases, many of which apply in real-world scenarios. By applying both systems, we designed and modeled an acetabular cup that when measured decreased the mass from 129 grams initially down to 52 grams, a 60% decrease in total mass. Furthermore, the design we created lessened the trauma on the piece through distributing force across the entirety of the piece rather than specific segments only. This shows an increased durability and life expectancy when compared to usual acetabular cups.

  • Topology Optimization of Acetabular Cup by Finite Element Simulation
    22-34
    Views:
    396

    Hip replacements typically consist of a four-part piece. Our research will focus primarily on the acetabular component. Several different types of materials can be used when creating a hip replacement implant ranging from plastic to titanium. Different materials are used to accommodate for allergic reactions or circumventing potential health risks. Aside from the material, the size of the components plays a factor in terms of durability; a larger diameter head might avoid dislodgement though it could increase wear and tear on the stems through constant friction. A patient’s force applied to the hip replacement is usually measured through a number of physical assessments. Finite element analysis (FEA), a computer-based method of data observation, allows for us to accurately simulate hip forces and their impact on the hip replacements. Through this, it becomes easier to predict and calculate the performance of specific designs. Generative systems can also be used to support performance analysis and optimization through assessing a multitude of cases, many of which apply in real-world scenarios. By applying both systems, we designed and modeled an acetabular cup that when measured decreased the mass from 129 grams initially down to 52 grams, a 60% decrease in total mass. Furthermore, the design we created lessened the trauma on the piece through distributing force across the entirety of the piece rather than specific segments only. This shows an increased durability and life expectancy when compared to usual acetabular cups.

Database Logos