Search

Published After
Published Before

Search Results

  • Finite Element Analysis of Cellular Structures Using Ansys
    197-204
    Views:
    203

    Additive manufacturing (AM) is a process in which the product is composed of overlapping layers of a material that is added using devices such as 3D printers. Its process has been evolving for decades and nowadays it can be used for several applications and with different materials. One modern usage is for medical and dental purposes. Since it became possible to print metal, it has been a good solution for bone implants, once it must be done with biomaterials and can now replicate the bone structure, for that unit cells should compose the implant. Both conditions are now possible to be achieved by AM, and the current study will analyze, using finite element method, the possibilities to create specimens for tests which the final product would result in a 3D printed bone implant.

  • Pin on Disc Tests of Closed Cell Aluminium Foams
    353-357
    Views:
    185

    Metal foams have a lightweight cellular structure with excellent mechanical and physical properties and are at the forefront of materials development for the automotive and other industries. Although metal foams are popular, they are still not sufficiently characterized thanks to their extremely complex structure. The aim of the research is the tribological investigation of closed cell metal foams with different production technologies and different cell sizes. The paper introduces the closed cell aluminium foams produced by direct foaming and gas injection and those raw materials. The Pin on Disc instrument and the most important parameters of the experiments are also presented.

  • Simulation of Hot Rolling by Cellular Automata
    190-195
    Views:
    184

    Our research is focusing to one of the most complex and important production step of flat rolled products that is the simulation of hot rolling. During hot rolling two phenomena as work hardening and the process of regeneration of crystals has strong influence for physical properties of microstructure of aluminium alloys. It needs to be taken into account in case of rolling technology steps and development. When we talk about aluminium the dynamic softening in fact it is dynamic recovery that is followed by dynamic recrystallization. It goes in the same order of magnitude rate. But in steels the recovery has only a minor effect. Hot rolled and newly modified grain structure is influenced by these dynamic phenomena. Hot rolled grain structure goes through significant changes under further production steps like cold rolling and heat treatments. But aside from these intermediate production steps the microstructure that we get after hot rolling has significant effect for mechanical and grains structure of the final flat rolled product. Proper technology planning is essential that for cellular automata simulation method can ensure useable and good solution for the simulation of recrystallization.

Database Logos