Search

Published After
Published Before

Search Results

  • Prioritizing Watersheds for Flood Risk Assessment in Uttarakhand Himalayas using Geospatial Techniques and TOPSIS Method
    54-71
    Views:
    28

    Uttarakhand has a highly diverse topography, with snow-covered peaks, deep canyons, roaring streams, and dusty plains, all drained by various rivers of the Ganges system, India. The present study prioritizes watersheds in the Uttarakhand Himalayas for flood susceptibility using the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method, supported by GIS and remote sensing data. ALOS PALSAR Digital Elevation Model (DEM) with 12.5-meter resolution was utilized to map topographic features and to analyze 18 morphometric parameters of 28 watersheds. The TOPSIS method prioritized sub-watersheds using AHP criteria weights, which are classified into five priority levels ranging from very low to very high. The Sarju, Ram Ganga, and Song watersheds were identified as having the highest flood risk, placing them in the “Very High” priority class. These watersheds exhibited high drainage density (Dd), stream frequency (Fs), and bifurcation ratio (Rb), indicating a dense and complex drainage network prone to rapid runoff and increased flood potential. The watersheds such as Bandagarh, Parry, and Chandra Bhaga were placed in the “Very Low” priority class due to lower closeness coefficient (Cci) values, suggesting simpler drainage systems and reduced flood risk. The AUC (Area Under Curve) value of 0.789, indicates a good predictive accuracy for the TOPSIS model. The classification helps in pinpointing high-risk areas that require urgent flood management interventions.

  • Flood model for the Bódva catchment
    12-26
    Views:
    236

    In term of floods the current area of Hungary has extensively been endangered. Modelling of flood processes – mainly following the hydrological events in the riverbed – has recently been developed. As far as protection dykes provide protection of the inhabited and agricultural areas, the flood models can run with acceptable preciseness. However, when dykes cannot withstand against the increasing load and a dyke burst occurs, fast and efficient protection measures shall be taken in the protected areas. The dynamic 4D Flood model presented in this paper makes possible a fast modelling of dyke burst occurring in the protected side and spreading of water mass, based on real parameters. For this reason the features of protected area shall be recognised, for example topology of creeks, features of agricultural and inhabited areas, parameters of roads, railways, rainwater drainage, buildings, natural conditions (soil parameters, meteorological characteristics, etc.). The results satisfy the comprehensive demands of the Directorate General for Disaster Prevention of Borsod-Abaúj-Zemplén County. In case of dyke burst, the completed Flood Model can run the expected events of the next hour in a few minutes. This time is enough for the specialists to bring operative decisions to protect the inhabitants and avoid material losses.