Search



Show Advanced search options Hide Advanced search options
The effect of plant density on maize yield in average and extremely dry years
Published December 21, 2008
7-16

The yield safety of maize has not been satisfactory in Hungary for decades. Yield is influenced by the combination of several factors.
In recent years, the frequency of dry years increased and fertilization decreased. These factors call for a rational determination of the plant density.
I studied the relationship between plant density and... yield in 2003-2004 and 2007 on meadow soil. 
In 2003, the weather was dry. In the vegetation period, the amount of precipitation was 78.5 mm lower and the temperature was 0.97 °C higher than the average of 30 years, the number of hot days was 47-60 (days with a temperature higher than 30 °C). However, we obtained favourable results under experimental conditions in 2003 after wheat as a forecrop using the fertilizer Kemira Power. 
The weather in 2004 was favourable. In the vegetation period, the amount of precipitation was 93.2 mm higher than the average of 30 years.  Although, the distribution of the precipitation could have been more favourable. The yield of the hybrids ranged between 8.87-10.42 t/ha. Among the studied seven hybrids, the early hybrids gave the highest yield at the highest plant density of 90 thousand plants/ha (PR38Y09, PR38A67, PR37D25, PR37M34). However, FAO 400-500 hybrids gave favourable results also at the low plant density of 45 thousand plants/ha (8-9 t/ha). At this plant density, the aeration of the plant stock was better and the hybrids were prone to bringing several cobs. Yield stagnated with increasing plant density (60 thousand plants/ha), then at 75-90 thousand plants per ha, the yield started to increase again.
In 2004 the yield of hybrids was considerably higher than in the previous year. In contrast to yields of 8.87-10.42 t/ha in 2003, yields in 2004 were around 9-12 t/ha.
The yield of the hybrid XO 902 P is above 12 t/ha already at a plant density of 45 thousand plants/ha. It gives maximum yield at the plant density of 90 thousand plants/ha.
The hybrid PR38P92 showed a good response to changing plant density, but its yield was only 9 t/ha at the low plant density value.
In a favourable year, the yield of the hybrids PR38B85, PR37W05, PR37D25, PR37K85 at a plant density of 45 thousand plants/ha 11 t/ha, while at the higher plant density of 90 thousand plants/ha, it ranges around 13-15 t/ha.

Hybrids PR36K20, PR35Y54, PR34H31 have a good individual yield and they are prone to bringing several cobs in favourable years at a low plant density. Their maximum yield at the plant density of 90 thousand plants/ha is almost 16 t/ha.
In 2007, the weather was similar to that of the extremely dry year of 2003. The amount of precipitation in the vegetation period was 41.9 mm lower than the average of 30 years and its distribution was not favourable either.
In the optimum NPK fertilizer treatment at an optimum plant density, the yield of hybrids ranged between 9.32-10.73 t/ha. The highest yields of 10.22-10.73 t/ha were measured for hybrids PR38A79 (FAO 300) and PR35F73 at a relatively low plant density of 60 thousand plants/ha.
In the average of the hybrids, the optimum NPK dosage was N 131, P2O5 82, K2O 93 kg/ha active ingredient.

Show full abstract
20
36
The Influence of Cropyear on the Yield and Yield Safety of Different Sunflower Hybrids
Published December 6, 2005
68-73

The effectiveness of plant production is basically influenced by the ecological, biological and agricultural technical factors. There are many kinds of sunflower hybrids which differres in their adaptability. If we want to increase the efficiency of sunflower production, we have to design different technologies for each hybrid. In the last deca...de, the range of sunflower hybrids increased exceedingly. This is the reason why we have to do experiments with them and examine what the relationship among genotypes, the environment and the hybrids is.
We made our experiments at the Látóképi Experimental Station of the University of Debrecen. We had 57 hybrids in 2001, and 44 in 2002 and 2003. We used only just those hybrids which were planted in every year.
In 2001 the months at summer were hot and the distribution of rainfall was extreme. In the beginning of the year 2002, the summer was also hot. During the abscessing period, the temperature was under the 30 years average and the rainless period was typical. In 2003, the temperature was extrame and the rainfall during the growing season was dry. The yield average which was determined after the three years in the very early group averaged 3998,9 kg/ha. The best hybrids were the LG 5385 (4273,3 kg/ha) and the Magóg (4134,4 kg/ha). The early group’s average was 4129,4 kg/ha. The best hybrid was the Astor in the early group. The middle group’s average was 4169 kg/ha and the Zoltán had a better yield than average (4238 kg/ha). In the confectionary group the Iregi szürke csíkos (3579,9 kg/ha) reached the best yield and it is above the average to it’s group (3225 kg/ha).
To estimate the results, we used factor analysis. Its results allow us to say that rainfall first and second part of June has a negative influence on yield. Aswith to the yield, yield safety is also important to know, which shows the adaptability of the hybrid.
After examining the CV% in the three years we can say that the most stable hybrids were in the very early group Samanta (10,94 CV%) and the LG 5385 (12 CV%) In the early group, the most reliable hybrids were Altesse RM (6,9 CV%) and the Astor (10,8 CV%) and the end in the middle group the Lympil (10 CV%) and in the confectionary group the Birdy (9,8 CV%) and IS 8004 (12 CV%) were the best.
After examining yield and yield safety, our conclusions are that in the Hajdúsági löszhát, the very early group LG 5385, early group Altesse RM, middle group Lympil and the parandial group IS 8004 hybrid had the highest yield and the best yield stability.

Show full abstract
21
26
Evaluation of long term experiments from a new aspect
Published September 8, 2020
55-60

During our work, we developed a new, simple method to show the effects of fertilization on yield, which can both be applied over the long term as well as in series of independent experiments.
During the testing of this method, at the experimental farm of the Debrecen University Center for Agricultural Sciences at Látókép on a chernozem so...il with lime deposits, we examined the fertilizer reaction of maize hybrids between 1989 and 1994. The treatments were: winter tillage, plant density of 70-80 thousand, unfertilized, N 120, N 240 kg/ha fertilized treatments, long term experiments using Dekalb 524 and Volga SC hybrids in long term experiments.
Four parameters are shown in the model. In the examined period TRmax represents the greatest yield in the fertilized treatments, NT the yield in unfertilized treatment, k the „efficiency of fertilizer” to NT and b the depression-coefficient, where the expected value is zero. The expected grain yield of the fertilized treatments (Y), in the function of the unfertilized grain yield (x) is the following:

The parameters were determined using the Monte Carlo method, in the optimizing process the sum of deviation square was minimized. The correct conformation of the functions was determined by the greatness of the R-value and the standard error. We found that during six years of testing, the tendency of fertilization efficiency was similar in the case of both hybrids. There was an unfavorable weather interval and, in these years, the yields were low, fertilization did not have an effect and moreover, in extremely bad conditions resulted in an obvious yield decrease. With the  improvement of conditions, which in the case of our country means an increase in precipitation, the efficiency of fertilization increases and reaches its peak at 13-14 t/ha. At this point, the yield increasing effect of fertilization is 4-4,5 t/ha. If the yield of the unfertilized treatments increases from 8-9 t/ha, then the efficiency of the applied fertilizer decreases.
Most likely, the k and b parameters depend on the soil of the experimental location (nutrient and water management) and on the amount of  pplied fertilizer and the characteristics of the  hybrid. With the increase of fertilizer dosage the k-parameter also increases. The greater value though does not obviously mean a more favorable situation. It is true that in medium and good years this means great fertilizer efficiency, but in low or extreme precipitation conditions it also means greater risk. With the increase of the k-parameter, the yield deviation also increases which, from a cultivation point of view, is quite unfavorable. If the value of the b-parameter is other than, zero then the effect is clearly unfavorable, because with the increase of this value, the yield decrease is also greater. The fertilizer reaction of the two examined hybrids can be well characterized by these two hybrids.
Examining the six years, our created model estimated the effect of fertilization on the yield accurately and with a high degree of safety. Both in highly unfavorable and extremely good years, it gave an exact estimate. In our opinion, it can be used well to evaluate the effects of fertilization on yield in the future.

Show full abstract
28
5
The effect of sowing time on the yield and the variance of the seed moisture content a harvest of maize (Zea mays L.) hybrids
Published May 23, 2006
39-49

Sowing time is an important crop technology element of maize. We studied the effect of this factor on the growth and production of maize in an experiment carried out near Hajdúböszörmény, in 2003 and 2004, and near Debrecen, in 2005.
The soils of the experiments were humic gley soil and chernozem. Weather in both years differed greatly. ...2003 was drought. Neither the distribution, nor the quantity of the precipitation were suitable in the growing season for maize. This fact basically determined the results.
In 2004 and in 2005, there were favorable and rainy seasons. The distribution and quantity of precipitation were suitable between April and September. The average temperature was also suitable for maize.
In 2003, we tested seven hybrids at four sowing times. Hybrids with a shorter vegetation period gave the highest yield at the later sowing time, while the hybrids with a longer vegetation period gave them at the earlier sowing time. The yield of PR34B97, PR36N70, PR36M53 hybrids were the best at every sowing times. The moisture loss of hybrids in the late maturity group was faster in the maturity season, but the seed moisture content was higher than the hybrids with early sowing time. The seed moisture content was very low due to the droughty year. In two hybrid cases, this value was higher than 20% only at the fourth sowing time.
In 2004, we examined the yield and seed moisture contents of nine hybrids. In the favorable crop year, the yield of every hybrid was the highest at the second and third sowing times. Yields of PR34H31 and PR38B85 hybrids were significant. The seed moisture content at harvest was higher than the previous year, due to the rainy season. In the case of hybrids sown later, this value was higher by 30%. However, we noticed that this value was lower at the earlier sowing time, than at the later.
In 2005, we applied three sowing times. Unfortunately, the results of the third sowing time could not be analyzed, due to the low plant density. The yield of the six hybrids varied from 12 to 14 t/ha at the first sowing time. At the second sowing time, the yields fluctuated and each hybrid had the lowest yield, except the PR37D25 hybrid. At the latest sowing time, the yield of the PR34B97 hybrid was the lowest. However, this low yield was due to damage from the Western corn rootworm (Diabrotica virgifera) imago. The moisture content at harvest of the hybrids varied from 16 to 24% at the first sowing time. Yields at the second sowing time were higher. The low yield of the PR34B97 hybrid coupled with a higher seed moisture content. In addition, the maximum value of the LAI was more favourable at the first sowing time, and ranged between 5-5.5 m2/m2.
The crop year had a more dynamic effect on maize than the sowing time. First of all, the quantity and distribution of precipitation played an important role in respect to yield safety.

Show full abstract
17
16
The Effect of Sowing Time and Plant Density on the Yield of MaizeHybrids
Published December 6, 2005
95-104

The crop technology of maize has two important elements, sowing time and plant density. In 2003 and 2004 we studied the effect of these two factors on the growth and production of maize in an experiment carried out near Hajdúböszörmény.
The soil of the experimental plots was meadow soil.
Weather in both years was differed greatly. 200...3 was drought. Neither the distribution nor the quantity of the precipitation were suitable in the growing season for maize. This fact basically determined the results.
In 2004, we could talk about a favorable and rainy season. The distribution and quantity of precipitation was suitable between April and September. The average temperature was also suitable for maize.
Results of the sowing time experiment:
In 2003, we tested seven hybrids at four sowing times. Hybrids in the early maturity group gave the highest yield at the later sowing time, while the hybrids of the long maturity group gave it at the earlier planting time. The yield of PR34B97, PR36N70, PR36M53 hybrids was the best at every planting time. The moisture loss of hybrids in the late maturity group was faster in the maturity season, but the seed moisture content was higher than the hybrids with early sowing time. The seed moisture content was very low due to the droughty year. In two hybrid cases, this value was higher than 20% only at the fourth sowing time.
In 2004, we examined the yield and seed moisture content of nine hybrids. In the favorable crop year, the yield of every hybrid was the highest at the second and third sowing time. Yields of PR34H31 and PR38B85 hybrids were significant. The seed moisture content at harvest was higher than the previous year due to the rainy season. In the case of hybrids sown later, this value was higher by 30%. However, we noticed that this value was lower at the earlier sowing time than at the later.
The crop year had a more dynamic effect on maize than the sowing time. First of all, the quantity and distribution of precipitation played an important role in respect to yield safety.
Results of the plant density experiment:
We tested the reaction of hybrids at four plant densities (45,000, 60,000, 75,000 and 90,000 stock/ha) every two years. In 2003, the tested seven hybrids reached the highest yield at the 90,000 stock/ha in the face of a droughty year. The effect of forecrop and favorable nutrients caused these results. In the rainy 2004 year, the yield grew linear with the growing plant density. The yield of the best hybrids were 14-15 t/ha at the 90,000 stock/ha.
Such a high plant density (90,000 stock/ha) couldn’t adaptable in farm conditions in rainy season. It is practical to determine the interval of plant density besides the optimum plant density of hybrids which gave correct yield. The farmers have to use the low value of this interval due to the frequent of the droughty years.

Show full abstract
23
50
Studies of plant density increase – on maize hybrids of various genotypes on chernozem soil
Published March 11, 2014
87-92

The yield and crop safety of maize are influenced by numerous ecological, biological and agrotechnical factors. It is of special importance to study one of the agrotechnical elements, the plant density of maize hybrids, which is influenced by the growing area conditions and the selected hybrid.

We have investigated the effects of three ...different plant numbers (50 thousand plants ha-1, 70 thousand plants ha-1 and 90 thousand plants ha-1) on the yield of 12 maize hybrids of different genotypes in Hajdúság, on calcareous chernozem soil, in the Látókép Research Farm of the University of Debrecen, Centre for Agricultural Sciences, in 2013. The experiment was set in four replications, besides commonly applied agrotechnical actions. In the experiment, 1 hybrid of very early (Sarolta), 9 of early (P 9578, DKC 4014, DKC 4025, P 9175, NK Lucius, Reseda, P 37N01, DKC 4490, P 9494) and 2 of medium (Kenéz, SY Afinity) maturation were used.

With the increase of the plant number, the number of individuals per unit area increases. According to our experimental results, we have concluded that with the increase of the plant number, the yield increased in the average of the hybrids. In the average of the hybrids, in the case of 50 thousand plants ha-1, the yield was 13 130 kg ha-1, in the case of 70 thousand plants ha-1, it was 13 824 kg ha-1, while in the case of 90 thousand plants ha-1, the yield became 13 877 kg ha-1.

In addition to plant density increase, it is necessary to determine the optimal plant number that is the most favourable for the certain hybrid under the given conditions. To fulfil this aim, we have determined the optimal plant number corresponding to the maximum yield of the given hybrid, within the given plant number range. The optimal and applied plant numbers differ, since the optimal one could only be applied under ideal conditions. Since the agrotechnical actions cannot always be carried out in appropriate quality and one has to adapt to the weather conditions, thus we have determined a plant number range in the case of each hybrid. The hybrids were classified into categories of producible in narrow and broad plant number range.

Show full abstract
60
62
Effect of N, P and K fertilisers and their interactions in a long-term experiment on winter barley (Hordeum vulgare L.)
Published October 24, 2016
87-92

The aim of this work was to analyse the effect of K, P and N supplies on the yield of winter barley in a long-term mineral fertilisation experiment with clearly distinct soil nutrient supply levels in order to develop fertilisation guidelines for winter barley growers. The experiment was set up in 1989 on a chernozem meadow soil calcareous in t...he deeper layers, applying all possible combinations of 4 levels each of N, P and K fertiliser, giving a total of 64 treatments.

The results of analyses performed in 2011 and 2012 can be summarised as follows:

  1. In 2011, when rainfall supplies were deficient in the shooting phase, improved K supplies (324 mg kg-1 AL-K2O) increased the grain yield, but in 2012, when rainfall supplies were more evenly distributed, K supply levels in the range 210–335 mg kg-1 AL-K2O had no significant influence on the yield of winter barley.
  2. An analysis of the P treatments revealed that, compared to the 119–133 mg kg-1 AL-P2O5 level (P0), better P supplies (186–251 mg kg-1) led to a significant increase in the grain yield.
  3. In both years rising N rates significantly increased the yield up to an annual N rate of 160 kg ha-1.

      4. A K×N interaction could only be detected in the nutrient supplies of winter barley in 2011. The yield-increasing effect of N fertiliser was more    pronounced at better K supply levels, while K fertiliser led to higher yields in the case of better N supplies.

Show full abstract
68
63
The effect of water supply and crop year on the yield potential of sweet maize (Zea mays L. convar. saccharata Koern.) hybrids with different genotypes
Published December 16, 2012
203-210

The successfulness of crop production is significantly affected by not only the the average yields that provide cost effectiveness, but also the success of striving for yield safety, therefore, varieties and hybrids tolerant to environmental stress factors are worth being included into the sowing structure. Our aim was to further the decision m...aking of producers in prepaering the right sowing structure by the evaluation of sweet maize hybrids’ tolerance to excess rainfall.
We performed our examinations in an extremely wet year (2010) on chernozem soil on three sweet maize hybrids (GSS 8529, GSS 1477, Overland) in 12 replications. Comparing the yields of 2010 with those that can be expected under optimal rainfall conditions, we showed that the examined hybrids react to the amount of rainfall higher than their needs with yield depression. The excess rainfall tolerance of the examined hybrids is different in the case of each hybrid.

Show full abstract
46
62
Technological and Economic Analysis on the Hungarian Rice Sector
Published May 11, 2003
226-233

Hungary lies on the northern edge of rice production area. According to this, the climatic conditions area not perfect for this species. The production area of rice involves typically the poorer quality soils, however these meet the requirements of rice. In Hungary exclusively domestic types are grown which have high yield and good quality and ...these are usually wore successful than foreign types. On the other hand, these Hungarian types should be improved considering safety in production. Nowadays, rice is grown in large scale companies with 300-1400 hectares, where production technology already exists, machinery is suitable, however the latter one a little bit old.
The average yields of the analysed companies were 3-4 t/ha in the past few years, which were a little bit above the national averages. The operating cost per hectare is almost 200 thousand HUF, from which the main part is the cost of machinery (35%) and the material cost (34%). The main part of the latter one is the irrigation costs (30%). The average cost, calculated from the total production cost, is 80 thousand HUF/t. Considering the above-mentioned costs and the price of rice (75 thousand HUF/t) it can be stated that the profitability of the rice sector is not the best, the cost rated profitability is -6.6%. According to the results of this analysis possibilities for the increase in profitability and improvement are increased subsidies and market price, as well as genetic improvement.

Show full abstract
8
18
Possibilities of downsizing sweet cherry trees via growing techniques
Published September 14, 2005
71-74

By applying smaller crown sizes and intensive growing techniques, many advantages can be identified compared to the extensive orchards. Also, nursing/pruning and harvest work can be performed more effectively. The outer and inner quality parameters of the fruit and the effectiveness of plant protection techniques are improved. The smaller crown... size enables us to apply technologies for ensuring yield safety (e.g. hail, rain, bird nets), resulting in an increase in productivity. The introduction of smaller trees poses a great challenge to cherry production. Trials with dwarfing rootstocks have not yet been successful, therefore, we must use the cv. Mahaleb rootstock, which is excellently adapted to the Hungarian conditions, and also has a stronger growth. In addition, rootstocks with such strong growth are needed for the necessary regeneration of the productive parts of cherry cultivars, there is a need for. At the research garden of the University of Debrecen in Pallag, we planted 21 cherry cultivars on cv. Mahaleb (CT500) rootstock, in a 4 m x 1 m spacing pattern, in the spring of 2000. In our study, we demonstrated the possibilities of developing and maintaining the string super spindle through repeated summer pruning, in terms of growth, bud and fruit formation,. Based on these parameters, we determined which cultivars are the most suitable for intensive production.

Show full abstract
82
23
1 - 10 of 10 items