Search

Published After
Published Before

Search Results

  • Effect of sufficient and deficit irrigation with different salt inputs on the yield of cucumber
    19-25
    Views:
    119

    Soil salinisation is considered one of the major environmental hazards threatening agricultural productivity and can be accentuated by climate change as well as the use of low-quality water in irrigation. This is the case in our study area which is affected by secondary salinisation due to the use of saline irrigation water for horticultural production. Deficit irrigation technique is implemented especially in arid and semiarid regions due to its potential to optimise water productivity while maintaining or increasing crop yield. The main objective of this study was to compare the effect of irrigation with sufficient (SD) and deficit (DD) doses. This research was carried out in Karcag in 2020. Cucumber was grown on a meadow chernozem soil and was irrigated with SD and DD of two irrigation water qualities. Soil moisture was monitored and crop yields were recorded. Despite the differences in quality and quantity of water, the application of less water by DD maintained the same yield as SD. We found a non-significant difference between the average soil moisture contents under the treatments (15.5 v/v% for SD and 13.5 v/v% for DD). Deficit irrigation can be an efficient technique due to its potential for improving water use efficiency, maintaining sufficient soil moisture content favourable for proper crop development and yield.

  • Methodology adaptation and development to assess salt content dynamics and salt balance of soils under secondary salinization
    199-206
    Views:
    244

    The effect of irrigation with saline water (above 500 mg L-1) is considered a problem of small-scale farmers growing vegetable crops with high water demand in the hobby gardens characteristic of the Hungarian Great Plain. In order to simulate the circumstances of such hobby garden, we set up an experiment including five simple drainage lysimeters irrigated with saline water in the Research Institute of Karcag IAREF UD in 2019. We regularly measured the electric conductivity (EC) of the soil referring to its salt content and the soil moisture content with mobile sensors. Before and after the irrigation season, soil samples from the upper soil layer (0-0.6 m) were taken for laboratory analysis and the soil salt balance (SB) was calculated. The actual salt balance (SBact) was calculated of the upper soil layer (0-0.6 m) based on the salt content of the obtained soil samples. The theoretical salt balance (SBth) was calculated by the total soluble salt content of the irrigation water and leachates. During the irrigation season, we experienced fluctuating EC in the topsoil in close correlation with the soil moisture content. Based on the performed in-situ EC measurements, salts were leached from the upper soil layer resulting in a negative SB. Combining SBact and SBth of the soil columns of the lysimeters, we estimated the SB of the deeper (0.6-1.0 m) soil layer. We quantified 12% increase of the initial salt mass due to accumulation. We consider this methodology to be suitable for deeper understanding secondary salinization, which can contribute to mitigating its harmful effect. By repeating our measurements, we expect similar results proving that saline irrigation waters gained from the aquifers through drilled wells in Karcag are potentially suitable for irrigation if proper irrigation and soil management are applied.

     

  • Mitigation of the effect of secondary salinization by micro soil conditioning
    115-119
    Views:
    236

    This research has the general goal to meet the customization of agriculture in small scale farming. We are developing a technique using micro doses of soil conditioners and organic material applied in the root zone of vegetable crops. We expected to change the physical and chemical properties of the affected soil, which has been irrigated with salty water. Two different soil conditioners were tested. A lysimeter experiment including 8 simple drainage lysimeters was set up in the Research Institute of Karcag IAREF University of Debrecen in 2017. The main goal was to study the effect of different soil conditioners on the soil endangered by secondary salinization induced by irrigation with saline water. In order to compare the difference between the treatments, we collected soil samples, water samples, and determined the yields. Chili pepper (Capsicum annuum) was used as an indicator crop during one specific agricultural season. The technique called micro soil conditioning is rational because several reasons. The roles of the technique are various, for example it can serve as a source of carbon or a container for soil amendments and can minimize evaporation. We found this technique not to interfere with the chemical reaction or the interaction with the plants. However, the micro doses of soil amendments had the role to minimize the risk of soil degradation and do not significantly influence soil respiration. In addition, by improving soil properties, soil conditioning increases the leaching of the excess of salts from the root zone. In fact, this technique can decrease the cost of the inputs and improves the production of vegetables, and at the same time mitigates the effect of secondary salinization.

  • Evaluation of chickpea (Cicer arietinum L.) in response to salinity stress
    105-110
    Views:
    326

    Soil salinity is a severe and expanding soil degradation problem that affects 80 million ha of arable lands globally. Chickpea (Cicer arietinum L.) is very sensitive to saline conditions; the most susceptible genotypes may die in just 25 mM NaCl in hydroponics. Approximately 8–10% yield loss in chickpea production is estimated due to salinity stress. However, it is still not established why chickpea is so susceptible to salt affection. Salinity (NaCl) impedes germination of seeds, though chickpea varieties considerably differ from one another in this respect. Some chickpea genotypes are more tolerant in the stage of germination, tolerating even 320 mM NaCl. The reasons of this variation are unrevealed; there is a shortage of knowledge about the germination abilities of chickpea genotypes in saline conditions. Nevertheless, the effect of salt stress on vegetative growth can be analysed in hydroponics, in pot or field conditions, regardless the experimental environment, the ranking of genotypes regarding salt resistance is coherent. Chickpea genotypes can be different in their ability to retain water, maybe under salt affection; the more salt tolerant lines can maintain higher water content in the shoots, while the more sensitive ones cannot. The identification of salt tolerant chickpea landraces based on developing genetic variability is a suitable strategy to combat against salinity problems arising in arid and semi-arid areas.

  • Comparative analysis of soil analysing datas on different sempling-plots
    85-90
    Views:
    87

    Hibrid maize is cultivated on larger plots, therefore the sown areas of hibrid maize are heterogeneous from a pedology aspect. Heterogenity causes problems during tasseling, chemical plant protection and harvest. The heterogenity of sown areas can be compensated by fertilization which is based on soil analysis. We carried out research into change of the soil on four soil types from 1987 to 2005.
    There were no significant changes in pH, hydroiodic acidity, CaCO3-content, humus-content on meadow chernozem soil. We detected equalization of salin content in the examined soil layers. There were no significant changes in the measured values on chernozem meadow soil and solonetz meadow soil in 2005. We discoverd equalization of saline content on chernozem meadow soil, but the changes were not as obvious as the changes on meadow chernozem soil. We found salinization in the 30-60 cm soil layer on type meadow soil that may be due to water movement.

  • Genetic and Practical Classifications of Hungarian Saline Soils (Contemporary Publication)
    111-118
    Views:
    102

    The first part of the paper treates possible ways of soil alkalisation and the differences due to the reaction of the medium, neutral or alkaline, respectively. Alkalisation may occur in any soil, independently of the type, or even in soil-like formations, if conditions are favorable. Alkali soils are so-called hydrogenetic formations, developed in part through water effects. Under conditions prevailing in Hungary two kinds of salt migration processes, opposite to one another, are observable, i.e.:
    1. Leaching downward, causing decrease in the base content of the upper layers,
    2. Capillary rise of salts, causing increases in base content of the upper layers.
    Accumulation of soluble salts usually takes place in the transition zone where these two processes get into contact with each other (Fig. 1).
    * A közlemény első ízben a Bukaresti Nemzetközi Talajtani Konferencián (1958. IX. 26-án) német nyelven: „Die genetische Klassifizierung der ungarischen Szikböden” címen hangzott el.
    As precipitation amounts in the Hungarian lowlands from 500 to 550 mm and causes leaching, true saline soils do not occur, except on some spots.
    Between the two extreme types – completely leached, and salinized where leaching is completely absent, respectively – there exists a long range of soils alkalised or salinized to various degrees. Thus the various types of alkali soils display an interdependence with one another as shown in Fig. 2.
    This interrelations may perform a base for the genetical classification of alkali soils of various properties and peculiarities. Summarising the facts stated above the paper offers a roughly, elaborated scheme for the classification of Hungarian alkali and saline soils, shown in a comprehensive table, the particulars of which are dicussed in the text. Thus the foundation is laid down for a detailed classification of alkali soils that later may become incorporated into an internationally approved system of alkali soils. The so-called practical classes of alkali soils – determined according to methods of reclamation – may be inserted into the delineated genetical system.