Show Advanced search options Hide Advanced search options
Mitigation of the effect of secondary salinization by micro soil conditioning
Published May 20, 2020

This research has the general goal to meet the customization of agriculture in small scale farming. We are developing a technique using micro doses of soil conditioners and organic material applied in the root zone of vegetable crops. We expected to change the physical and chemical properties of the affected soil, which has been irrigated w...ith salty water. Two different soil conditioners were tested. A lysimeter experiment including 8 simple drainage lysimeters was set up in the Research Institute of Karcag IAREF University of Debrecen in 2017. The main goal was to study the effect of different soil conditioners on the soil endangered by secondary salinization induced by irrigation with saline water. In order to compare the difference between the treatments, we collected soil samples, water samples, and determined the yields. Chili pepper (Capsicum annuum) was used as an indicator crop during one specific agricultural season. The technique called micro soil conditioning is rational because several reasons. The roles of the technique are various, for example it can serve as a source of carbon or a container for soil amendments and can minimize evaporation. We found this technique not to interfere with the chemical reaction or the interaction with the plants. However, the micro doses of soil amendments had the role to minimize the risk of soil degradation and do not significantly influence soil respiration. In addition, by improving soil properties, soil conditioning increases the leaching of the excess of salts from the root zone. In fact, this technique can decrease the cost of the inputs and improves the production of vegetables, and at the same time mitigates the effect of secondary salinization.

Show full abstract
Mitigation of environment impact of mycotoxins produced by Fusarium species
Published December 16, 2012

The Fusarium fungi hazards the grain quality of cereals, therefore significantly affects their utilization as animal feed or consumable product. The Fusarium can decrease the quality of wheat in different ways: decreases the germination capability, causes visible discoloration, mould may appear, reduces the dry material and nutrient content of ...the grain, causes mycotoxin infection – as a result given by its by-product. Micotoxins produced by Fusarium genus, as the trichotecenes (T-2, HT-2, deoxynivalenol, nivalenol, diacetoxyscirpenol, Fusarenone-X) and the zearalenone (F-2) are the most common in Hungary. Occurrence of fumonisins first discovered in 1988 are must be identified carefully. About 20–30% of the overall worldwide production of cereals is infected with Fusarium and its toxins, which situation is similar in Hungary. This infection causes serious yield-losses in cereal production. In the case of cereal products, which non-utilizable as forage seems, an optimal solution is utilizing as biogas raw material, but it is also important to examine the effect of the infected cereal on the anaerobe digestion process.

Show full abstract
Examining the compensation for the 2010 flood in the Sajó valley using real estate examples
Published July 24, 2014

The intention of this article is to investigate the central damage mitigation of the 2010 flood in point of properties. During the investigationI performed the processing of the revealed data on a country level perspicuity, and in details on the level of sample area. In my study I worked with the available damage summations, the number of the d...amaged properties and the sources granted by central budget to extenuate those,and the husbandry database comparative analysis of local government of the sample strata. It came clear by the analysis of the results, which regions require more acquisition in the further process of the project.

Show full abstract
Challenges – the impact of climate change on the nutritional management of Hungarian orchards
Published September 5, 2018

The agricultural sector is increasingly exposed to both environmental and economic risks due to the phenomena of climate change and climate variability. Fruit growth and productivity are adversely affected by nature’s wrath in the form of various abiotic stress factors. Climate change and extreme climatic events are predicted to increase in i...ntensity, frequency, and geographic extent as a consequence of global climate change. It is no doubt that frequency of unexpected climatic events and their growing rate result in an increasing amount of problems for fruit growers globally. Today, climate change impacts are the most serious problems for Hungarian fruit growers as well. It can be stated that the nutrient demand of fruit trees can be supplied only under even worse conditions.

Therefore, it is so important to know and apply adaptation and mitigation strategies in horticulture to improve fruit quality and yield. In the last ten years, at the Faculty of Agricultural and Food Sciences and Environmental Management at University of Debrecen expanded studies have been made to prove the importance of groundcover management in horticultural applications. In this mini review paper, is presented, how the university's researches contributed to the expansion of knowledge of preservation of soil moisture and what advice we can provide for fruit growers to face the challenges of climate change.

Show full abstract
New challenges in soil management
Published September 5, 2018
Soil management represents two important tasks that are harmonization of the soil protection with demands of the crop to be grown on the given land under prevailing farming condition. Further goals are to preserve and/or develop the soil physical, biological and chemical condition and to avoid the unfavourable changes of the soil biological a...ctivity and the soil structure. Classical authors emphasised the importance of creating proper seedbed for plants. In the physical approach, tillage was believed to play an important role in controlling soil processes. Consequently, the period of several centuries dominated by this approach is referred to as the era of crop-oriented tillage (Birkás et al., 2017). The overestimation of the importance of crop requirements resulted in damaging the soils, which inevitably led to turn to the soil-focused tillage. Since the first years of climate change, as the new trends have raised concern, tillage must be turned into a climate-focused effort with the aim of reducing climate-induced stresses through improving soil quality.
The development of soil management has always been determined by the economical background. At the same time, deteriorating site conditions have contributed to the conception of new tillage trends by forcing producers to find new solutions (e.g. dry farming theory in the past or adaptable tillage theory nowadays). Győrffy (2009) recited the most important keywords were listed in 2001 and that seemed to be important in the future of crop production. These keywords (endeavours) were as follows:
− Biofarming, organic farming, alternative farming, biodynamic farming, low input sustainable agriculture;
− Mid-tech farming, sustainable agriculture, soil conservation farming, no till farming, environmentally sound, environmentally friendly, diversity farming;
− Crop production system, integrated pest management, integrated farming, high-tech farming;
− Site specific production, site-specific technology, spatial variable technology, satellite farming;
− Precision farming.
Győrffy’s prognosis proved to be realistic and the efforts mentioned above have mostly been implemented. New challenges have also appeared in soil management in relation to the last decades. The most important endeavours for the future are:
1) Preserving climate-induced stresses endangering soils.
2) Turn to use climate mitigation soil tillage and crop production systems.
3) Applying soil management methods are adaptable to the different soil moisture content (over dried or wet may be quite common).
4) Use effectual water conservation tillage.
5) Use soil condition specific tillage depth and method.
6) Adapting the water and soil conservation methods in irrigation.
7) Preserving and improving soil organic matter content by tillage and crop production systems.
8) Considering that stubble residues are matter for soil protection, humus source and earthworm’ feed.
9) Site-specific adoption of green manure and cover crops.
10) Applying site-adopted (precision) fertilization and crop protection. Considering the development in agriculture, new endeavours will occur before long.
Show full abstract
1 - 5 of 5 items