Articles

A new model for predicting carbon storage dynamics and emissions related to the waste management of wood products: introduction of the HWP-RIAL model

Published:
June 5, 2023
Authors
View
Keywords
License

Copyright (c) 2023 by the Author(s)

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

How To Cite
Selected Style: APA
Király, Éva, Börcsök, Z., Kocsis, Z., Németh, G., Polgár, A., & Borovics, A. (2023). A new model for predicting carbon storage dynamics and emissions related to the waste management of wood products: introduction of the HWP-RIAL model. Acta Agraria Debreceniensis, 1, 75-81. https://doi.org/10.34101/actaagrar/1/12495
Received 2023-03-16
Accepted 2023-04-24
Published 2023-06-05
Abstract

The ability of wood products to store carbon allows for their significant contribution to the climate mitigation efforts and the emission reduction commitments set by the EU. In order to optimise the carbon storage capacity of wood products, it is important to take climate mitigation aspects into consideration as much as possible during their production, use and waste management. The aim of this study was to quantify the effects of product development, recycling, and waste management technologies on carbon storage and emissions. In the frame of the ForestLab project, a new model and decision support tool was developed, which is able to predict the duration of carbon storage of wood products and the evolution of emissions from them. The developed HWP-RIAL model (Harvested Wood Product Recycling, Incineration And Landfill model) uses the methodology of the Intergovernmental Panel on Climate Change (IPCC) to calculate emissions, which is also used in the National Greenhouse Gas Inventory report. It combines the IPCC waste model with equations describing the carbon storage and emissions of wood products, and the model is also supplemented with a self-developed recycling and waste routing module. This paper provides insight into the operation of the model by following the life cycle of 200,000 m3 particle board.

References
  1. Aleinikovas, M.–Jasinevičius, G.–Škėma, M.–Beniušienė, L.–Šilinskas, B.–Varnagirytė-Kabašinskienė, I. (2018): Assessing the Effects of Accounting Methods for Carbon Storage in Harvested Wood Products on the National Carbon Budget of Lithuania. Forests, 9(12), 737. https://doi.org/10.3390/f9120737.
  2. Börcsök, Z.–Schöberl, M.–Molnár, S.–Lakatos, Á.–Ábrahám, J.–Molnár, A. (2011): A faipari termékekben tárolt szén szerepe a klímavédelemben. http://www.fataj.hu/2011/01/123/1tema.pdf
  3. Borovics, A.–Király, É. (2022a): Erdőalapú klímamitigáció és alkalmazkodás Európában I. Erdészeti Lapok 157: 11 pp. 374–377.
  4. Borovics, A.–Király, É. (2022b): Erdőalapú klímamitigáció és alkalmazkodás Európában II. Erdészeti Lapok. 157: 12. pp. 439–441.
  5. Borovics, A. (2022): ErdőLab: a Soproni Egyetem erdészeti és faipari projektje: Fókuszban az éghajlatváltozás mérséklése Erdészeti Lapok 157: 4 pp. 114–115.
  6. Brunet-Navarro, P.–Jochheim, H.–Kroiher, F.–Muys, B. (2018): Effect of cascade use on the carbon balance of the German and European wood sectors, Journal of Cleaner Production. 170, 137–146.
  7. Brunet-Navarro, P.–Jochheim, H.–Muys, B. (2016): Modelling carbon stocks and fluxes in the wood product sector: a comparative review. Glob. Chang. Biol. 22, 2555–2569.
  8. Budzinski, M.–Bezama, A.–Thrän, D. (2020): Estimating the potentials for reducing the impacts on climate change by increasing the cascade use and extending the lifetime of wood products in Germany, Resources, Conservation & Recycling. X, 6, 100034, ISSN 2590-289X, https://doi.org/10.1016/j.rcrx.2020.100034.
  9. Carus, M.–Dammer, L. (2018): The circular bioeconomy—concepts, opportunities, and limitations. Ind. Biotechnol. 14, 83–91. https://doi.org/10.1089/ind.2018.29121.mca.
  10. EC (2014): Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Towards a circular economy: a zero waste programme for Europe. COM/2014/0398 final. https://ec.europa.eu/environment/circular-economy/pdf/circular-economy-communication.pdf. (Accessed 19 April 2023).
  11. EC (2015): Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Closing the loop – An EU action plan for the circular economy. COM/2015/0614 final. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52015DC0614. (Accessed 19 April 2023).
  12. Essel, R.–Breitmayer, E.–Carus, M.–Fehrenbach, H.–Geibler, J.–Bienge, K.–Baur, F. (2014): Discussion Paper: Defining Cascading Use of Biomass. Nova-Institut GmbH, Huerth, 7.
  13. Fortin, M.–Ningre, F.–Robert, N.–Mothe, F. (2012): Quantifying the impact of forest management on the carbon balance of the forest-wood product chain: a case study applied to even-aged oak stands in France. For. Ecol. Manag. 279, 176–188.
  14. Gentil, E.C.–Damgaard, A.–Hauschild, M.–Finnveden, G.–Eriksson, O.–Thorneloe, S.–Kaplan, P.O.–Barlaz, M.–Muller, O.–Matsui, Y.–Ii, R.–Christensen, T.H. (2010): Models for waste life cycle assessment: Review of technical assumptions, Waste Management, 30, 12, 2636–2648, ISSN 0956-053X, https://doi.org/10.1016/j.wasman.2010.06.004.
  15. Giurca, A.–Befort, N. (2023): Deconstructing substitution narratives: The case of bioeconomy innovations from the forest-based sector, Ecological Economics, Volume 207, 107753, ISSN 0921-8009, https://doi.org/10.1016/j.ecolecon.2023.107753.
  16. Gonçalves, M.–Freire, F.–Garcia R. (2021): Material flow analysis of forest biomass in Portugal to support a circular bioeconomy, Resources, Conservation and Recycling, Volume 169, 105507, ISSN 0921-3449, https://doi.org/10.1016/j.resconrec.2021.105507.
  17. Husgafvel, R.–LInkosalmi, L.–Hughes, M.–Kanerva, J.–Dahl O. (2018): Forest sector circular economy development in Finland: A regional study on sustainability driven competitive advantage and an assessment of the potential for cascading recovered solid wood, Journal of Cleaner Production, 181, 483–497, ISSN 0959-6526, https://doi.org/10.1016/j.jclepro.2017.12.176
  18. IPCC (2006): 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston, H.S.–Buendia, L.–Miwa, K.–Ngara, T.–Tanabe, K. (eds). Published: IGES, Japan
  19. IPCC (2014): 2013 Revised Supplementary Methods and Good Practice Guidance Arising from the Kyoto Protocol, Hiraishi, T.–Krug, T.–Tanabe, K.–Srivastava, N.–Baasansuren, J.–Fukuda, M.–Troxler, T.G. (eds) Published: IPCC, Switzerland.
  20. IPCC (2019): 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Calvo Buendia, E.–Tanabe, K.–Kranjc, A.–Baasansuren, J.–Fukuda, M.–Ngarize, S.–Osako, A.–Pyrozhenko, Y.–Shermanau, P.–Federici, S. (eds). Published: IPCC, Switzerland
  21. Király, É.–Börcsök, Z.–Kocsis, Z.–Németh, G.–Polgár, A.–Borovics, A. (2022): Carbon Sequestration in Harvested Wood Products in Hungary an Estimation Based on the IPCC 2019 Refinement. Forests 13, 1809. https://doi.org/10.3390/f13111809.
  22. Klein, D.–Höllerl, S.–Blaschke, M.–Schulz, C. (2013): The contribution of managed and unmanaged forests to climate change mitigation a model approach at stand level for the main tree species in Bavaria. Forests. 4, 43–69.
  23. Kohlmaier, G.–Kohlmaier, L.–Fries, E.–Jaeschke, W. (2007): Application of the stock change and the production approach to harvested wood products in the EU-15 countries: a comparative analysis. Eur. J. For. Res. 126, 209–223.
  24. Krankina, O.N.–Harmon, M.E.–Schnekenburger, F.–Sierra, C.A. (2012): Carbon balance on federal forest lands of Western Oregon and Washington: the impact of the Northwest forest plan. For. Ecol. Manag. 286, 171–182.
  25. Laurent, A.–Clavreul, J.–Bernstad, A.–Bakas, I.–Niero, M.–Gentil, E.–Christensen, T.H.–Hauschild, M.Z. (2014): Review of LCA studies of solid waste management systems – Part II: Methodological guidance for a better practice, Waste Management, 34, 3, 589–606, ISSN 0956-053X, https://doi.org/10.1016/j.wasman.2013.12.004.
  26. NIR (2022): Nemzeti Üvegházhatású Gázleltár Jelentés. https://legszennyezettseg.met.hu/kibocsatas/hivatalos-jelentesek
  27. OKIR (2023): National Environmental Information System. Available online: http://web.okir.hu/en/ (accessed on 17 April 2023).
  28. Pichancourt, J-B.–Manso, R.–Ningre, F.–Fortin, M. (2018): A carbon accounting tool for complex and uncertain greenhouse gas emission life cycles, Environmental Modelling & Software, 107, 158–174, ISSN 1364-8152, https://doi.org/10.1016/j.envsoft.2018.06.005.
  29. Profft, I.–Mund, M.–Weber, G.E.–Weller, E.–Schulze, E.D. (2009): Forest management and carbon sequestration in wood products. Eur. J. For. Res. 128, 399–413.
  30. Rüter, S. (2011): Projection of net-emissions from harvested wood products in European countries. In: vTI. Johann Heinrich von Thünen-Institute (vTI), Hamburg, Germany, 63.
  31. Rüter, S. (2016): Der Beitrag der stofflichen Nutzung von Holz zum Klimaschutz – Das Modell WoodCarbonMonitor. Technische Universität München, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt Holzforschung München, Lehrstuhl für Holzwissenschaft. München. 270.
  32. Schelhaas, M.J.–Esch, P.W.–Groen, T.A.–Jong, B.H.J.–Kanninen, M.–Liski, J.–Masera, O.–Mohren, G.M.J.–Nabuurs, G.J.–Palosuo, T.– Pedroni, L.–Vallejo, A.–Vilen, T. (2004): CO2FIX V 3.1-A modelling framework for quantifying carbon sequestration in forest ecosystems. In: Alterra. ALTERRA, Wageningen, Netherlands, 122.
  33. Sokka, L.–Koponen, K.–Keränen, J.T. (2015): Cascading Use of Wood in Finland – with Comparison to Selected EU Countries. VTT, p. 25.
  34. Stegmann, P.–Londo, M.–Junginger, M. (2020): The circular bioeconomy: its elements and role in European bioeconomy clusters. Resour. Conserv. Recycl. X 6, 100029. https://doi.org/10.1016/j.rcrx.2019.100029.
  35. Verkerk, P.J.–Delacote, P.–Hurmekoski, E.–Kunttu, J.–Matthews, R.–Mäkipää, R.–Mosley, F.–Perugini, L.– Reyer, C.P.O.–Roe, S.–Trømborg, E. (2022): Forest-based climate change mitigation and adaptation in Europe. From Science to Policy 14. European Forest Institute, ISBN: 978-952-7426-22-7. https://doi.org/10.36333/fs14.
  36. Vis, M.–Mantau, U.–Allen, B. (2016): Study on the Optimised Cascading Use of Wood. Brussels. 337.
  37. Werner, F.–Taverna, R.–Hofer, P.–Thurig, E.–Kaufmann, E. (2010): National and global greenhouse gas dynamics of different forest management and wood use scenarios: a model-based assessment. Environ. Sci. Policy, 13, 72–85.
  38. Whittaker, C.–McManus, M.C.–Smith, P. (2013): A comparison of carbon accounting tools for arable crops in the United Kingdom, Environmental Modelling & Software, 46, 228–239, ISSN 1364-8152, https://doi.org/10.1016/j.envsoft.2013.03.015.