Search
Search Results
-
Water infiltration into the soil – what do measurements indicate?
343-351Views:160Physical properties of top-soil organic materials significantly influence initiation processes of infiltration and runoff generation. This paper deals with the specifics of water infiltration through the top surface organic layer of the forest soil. Three field methods (Guelph permeameter, Tension disk permeameter, Single-ring method) and one laboratory method (Falling head) of hydraulic conductivity (KS) determination are compared and interpreted in the context of their applicability and limitations. The Falling head method provides far different values of KS if sample cylinders are or are not sealed with grease against the wall effect. The Guelf permeameter is very significant to the position of different horizons’ interface, while Tension disc permeameter results are dependent on antecedent soil moisture. The single ring method is applicable with acceptable results only when there is no abrupt interface between horizons in the vicinity of the ring bottom edge.
-
Effect of different production types on the yield and ß-carotene content of sweet potato /cultivar Ásotthalmi- 12/
45-49Views:176Production of sweet potato is extending in Hungary, despite the fact that there is no field-specific production technology. Therefore, many growers cannot utilize potential yields and quality. The goal of this study was to determine the optimal production method of the Ásotthalmi 12, a Hungarian sweet potato cultivar which can adapt to the Hungarian climate. The effect of single and twin rows production on the yield of this cultivar was examined. The planting was carried out on June 24th, the harvesting on October 20th and the growing-season was 120 days long. Uniform nutrient supply was applied to the whole field experiment. During basic fertilization, 206 kg Knd 20 kg N, 36 kg P ha-1 were used on the soil. While forming the ridges, we used an additional 25 kg N, 45 kg P and 62.5 kg K ha-1. We adopted drip tape irrigation on the experimental field. After the planting, from the 8th week of the vegetation, another 21 kg ha-1 K, 10 kg ha-1 MgSO4, and 2 kg ha-1 Ca(NO3)2 was added in one dosage weekly, until the 13th week of vegetation. At the evaluation of the experiment, we examined the yield regarding the whole experimental plot. SPAD and fluorescence measurements were carried out on 08.16. 2019, 08.28.2019, and on 09.13.2019, during the watering break. To demonstrate the difference between the dates, we applied ANOVA and Tukey post-hoc tests. For the measurement of phytonutrients HPLC, a liquid chromatograph was used, where the carotenoid content of the Ásotthalmi 12 cultivar was determined in connection with the different production methods. Test results showed that twin rows production leads to a nearly 30% greater yield, than single row production. We determined, that the growth of yield correlates negatively to the ß-carotene content of the Ásotthalmi 12 cultivar sweet potato.
-
Determination of the validation parameters of inductively coupled plasma mass spectrometer (iCP-mS): response curve linearity in the case of arsenic and selenium
67-71Views:181In the field of elemental analysis inductively coupled plasma mass spectrometers (ICP-MS) have the best sensitivity that means the lowest limit of detection, subsequently their applicability for the detection of essential and toxic elements in foods and foodstuffs is prominent. For the most elements could be measured the detection limit is between μg kg-1 (ppb) and ng kg-1 (ppt) e.g. for arsenic and selenium.
Considering an analytical task (sample type, analytes and their concentration, pretreatment procedure etc.) the applicability of an analytical method is determined by its performance characteristics. The purpose of validation is to ensure that the method would be used fulfills the requirements of the given task. In this article we describes one of the performance characteristics, the linearity, and the whole validation procedure aims measurement of arsenic and selenium in foodstuffs by inductively coupled plasma mass spectrometer (Thermo XSeries I.); but because of the limited number of pages the results are demonstrated only for arsenic.
The linearity of calibration was evaluated in three concentration ranges (0.1–1 μg l-1; 1–10 μg l-1; 10–50 μg l-1), with nine line-fit possibilities (without weighting, weighting with absolute or relative deviation; with or without forcing the curve through blank or origin) and different methods (graphical examination, correlation coefficient, analysis of variance).
The best method to ensure the linearity of correspondence between signal and concentration was the ANOVA test. In view of calibrations it was found that the range of 10–50 μg l-1 could be regarded as linear with four line-fit possibilities, and was non-linear between 0.1–1 μg l-1 and 1–10 μg l-1.
-
Element content analyses in the Institute for Food Sciences, Quality Assurance and Microbiology
203-207Views:148The role of chemical elements to ensure and promote our health is undisputed. Some of them are essential for plants, animals and human, others can cause diseases. The major source of mineral constituents is food, drinking water has a minor contribution to it, so the knowledge of elemental intake through food is crucial and needs continuous monitoring and by this way it promotes the food quality assurance and dietetics.
With the evolution of spectroscopic methods increasingly lower concentrations could be determined, so the elemental composition of a sample could be more precisely and fully described. Due to the results the gathered knowledge up to the present is supported and new observations can be done helping us to understand such complex systems as biological organisms are.
The quality of a food is determined by the full process of its production, consequently it starts with agricultural production so elemental-analysis usually cover the whole soil – plant – (animal) – food chain, by this way the „Fork-to-Farm” precept is true in elemental analysis field also.
The history of elemental analysis in the University of Debrecen, Centre for Agricultural and Applied Economic Sciences, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Food Processing, Quality Assurance and Microbiology goes back to 1980s when the so called Regional Measurement Central gave the background for research. The continuous deployment resulted in an obtain of an inductively coupled plasma atomic emission spectrometer (ICP-AES) in 1988, which extended the scope of examinations due to its excellent performance characteristics
compared to flame atom absorption (FAAS) and flame emission spectrometers (FES). The instrumental park retain up to date correlate to the developing analytical techniques due to acquiring a newer ICPAES in 1998 and an inductively coupled plasma mass spectrometer in 2004 – which sensitivity is three order of magnitude better compared to ICP-AES. The Institute supports the work with its own ICP-AES and ICP-MS since 2011.