Search

Published After
Published Before

Search Results

  • Introduction of DNA-based Methods to Agriculture Through Molecular Taxonomic Examination of Poa Species
    139-142
    Views:
    91

    biological methods, one among them is AFLP that is well applicable for taxonomic research. Bluegrass species, that are important components of meadow associations, thus their thorough knowledge is necessary in maintaining biodiversity, were examined with bringing this method to perfection.
    Taxonomic relationship of the members of Poa pratensis aggregation is a controversial issue. Present study aimes to identify the members of this group, with a developed AFLP method through molecular taxonomic examination of Poa species in meadows nearby Debrecen, revealing their genetical distances. Species of the aggregation show a great genetic variability, but their genetic proximity approves the use of the term aggregation. Results established wider geographical investigation of three species of the aggregation. The distinctness of the species based on their morphological features was confirmed according to their genetical basis as well. The method overall turned out to be appropriate for the taxonomic research of bluegrass species like Poa pratensis and its aggregation.

  • Investigation of genetic diversity in irradiated maize lines and its relation to hybrid performance
    20-26
    Views:
    163

    Knowledge of genetic diversity among available parental lines is fundamental for successful hybrid maize breeding. The aims of this study were to estimate (1) genetic similarity (GS) and genetic distance (GD) (based on Jaccard index) in four maize inbreed lines; (2) to classify the lines according to their GD and GS; (3) to determine hybrid performance based on GD and heterosis for yield ability in 4x4 full diallel system. We used morphological description and AFLP (amplified fragment length polymorphisms) for estimation genetic polymorphism in four maize inbred lines. We estimated the applicability of genetic similarity in SC and reciproc hybrids for prediction of their performance.
    Three primer combinations were used to obtain AFLP markers, producing 207 bands, 70 of whit were polimorphic. The dendogram based on genetic similarities (GS) and genetic distance (GD) and morphological description separated four inbred lines into well-defined groups. Morphological description just with AFLP analysis showed reliable results. In view of genetic distance, the UDL 1 line and their linear and reciprocal crosses showed significant heterosis effect, which was confirmed by heterosis calculation based on grain yield.

  • Application of AFLP-Method in Plant Sample Identification
    207-213
    Views:
    66

    One possible method for the determination of DNA-polymorphism is the PCR-based AFLP (Amplified Fragment Length Polymorphism). This method had been succesfully introduced to the Department of Botany at University of Debrecen in 2000-2001 with the examination of hay saffron (Crocus sativus L.) and its allies. Hay saffron is grown as a spice for some thousand years producing the most expensive spice in the world. This plant is sterile, triploid reproduces only vegetatively with no fertile seeds. However its origin is unknown it exists only in cultivation and it is a mutated variety of another species or an artificial or natural hybrid. Usual methods for the systematic examination are restricted hence it seemed to be reasonable to apply molecular biological methods in its case. Results of this work include the introduction and many fold application of the method beside ensuring the consequences of science literature with determining the C. cartwrightianus to give the most similar genetical pattern to C. sativus.

  • Molecular Biological Approach of Crocus sativus L. and its Allies
    112-115
    Views:
    133

    The hay saffron (Crocus sativus L.) is a sterile triploid plant, known in human culture only, with no fertile seeds produced. The origin of saffron is still a mist, however it is assumed to be an autopoliploid mutant or a hybrid. The recent classification and most of the former taxonomic publications define C. sativus to be derived from C. cartwrightianus, a wild species. Because of the sterility of hay saffron it seemed to be reasonable to apply molecular biological methods to complete classical taxonomic studies in examining its relations. The DNA polymorphism based AFLP method has confirmed the close relationship between these species.