Articles

Physiological characteristics of a promising black locust (Robinia pseudoacacia L.) clone under marginal site conditions

Published:
2025-06-08
Author
View
Keywords
License

Copyright (c) 2025 by the Author(s)

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

How To Cite
Selected Style: APA
Ábri, T. (2025). Physiological characteristics of a promising black locust (Robinia pseudoacacia L.) clone under marginal site conditions. Acta Agraria Debreceniensis, 1, 27-34. https://doi.org/10.34101/actaagrar/1/15473
Received 2025-02-10
Accepted 2025-05-08
Published 2025-06-08
Abstract

This paper studies the physiological characteristics of a promising black locust (Robinia pseudoacacia L.) clone, Farkasszigeti, compared to common black locust (control), under marginal site conditions in Eastern Hungary. A clone trial was established in 2022 near Debrecen to test new black locust clones, with measurements of photosynthesis (net assimilation, efficiency of photosystem II, intercellular CO2 level) and water-use characteristics (transpiration, stomatal conductance, water use efficiency etc.), using LI-6800 (LI-COR) portable photosynthesis system. However, the measured values were very low, indicating drought and heat stress. The results revealed that Farkasszigeti exhibited better net assimilation (2.13±0.75 µmol CO2 m-2 s-1), transpiration (1.41±0.20 mmol H2O m-2 s-1) and stomatal conductance (0.017±0.002 mol m-2 s-1) than the control, with significant differences (p=0.05). Furthermore, its photosystem II was more efficient, thus it has better heat tolerance. Although the clone Farkasszigeti was proved to be better in terms of water use efficiency values, no significant difference was observed in comparison with the control common black locust. Today, under changing climatic conditions, the study of physiological adaptation of tree species and clones has a crucial role.

References
  1. Ábri, T.; Borovics, A.; Csajbók, J.; Kovács, E.; Koltay, A.; Keserű, Z.; Rédei, K. (2023b): Differences in the Growth and the Ecophysiology of Newly Bred, Drought-Tolerant Black Locust Clones. Forests, 14, https://doi.org/10.3390/f14091802
  2. Ábri, T.; Csajbók, J. (2023): Comparative study of newly-bred black locust clones with regard to photosynthetic rate and water use efficiency: early evaluation. AAD, 1, 5–10. https://doi.org/10.34101/actaagrar/1/12256
  3. Ábri, T.; Cseke, K.; Keserű, Z.; Porcsin, A.; Szabó, F.M.; Rédei, K. (2023a): Breeding and improvement of black locust (Robinia pseudoacacia L.) with a special focus on Hungary: a review. iForest, 16, 290–298. https://doi.org/10.3832/ifor4254-016
  4. Ábri, T.; Gaganetz, D.Z.; Csajbók, J. (2024): Light response curve analysis of juvenile black locust clones: A case study from eastern Hungary. J. For. Sci., 70, 202–207. https://doi.org/10.17221/120/2023-JFS
  5. Ábri, T.; Keserű, Z.; Borovics, A.; Rédei, K.; Csajbók, J. (2022): Comparison of Juvenile, Drought Tolerant Black Locust (Robinia pseudoacacia L.) Clones with Regard to Plant Physiology and Growth Characteristics in Eastern Hungary: Early Evaluation. Forests, 13, https://doi.org/10.3390/f13020292
  6. Allen, C.D.; Breshears, D.D.; McDowell, N.G. (2015): On underestimation of global vulnerability to tree mortality and forest die‐off from hotter drought in the Anthropocene. Ecosphere, 6, 1–55. https://doi.org/10.1890/ES15-00203.1
  7. Bamberger, I.; Ruehr, N.K.; Schmitt, M.; Gast, A.; Wohlfahrt, G.; Arneth, A. (2017): Isoprene emission and photosynthesis during heatwaves and drought in black locust. Biogeosciences, 14, 3649–3667. https://doi.org/10.5194/bg-14-3649-2017
  8. Choat, B.; Jansen, S.; Brodribb, T.J.; Cochard, H.; Delzon, S.; Bhaskar, R.; Bucci, S.J.; Feild, T.S.; Gleason, S.M.; Hacke, U.G.; Jacobsen, A.L.; Lens, F.; Maherali, H.; Martinez-Vilalta, J.; Mayr, S.; Mencuccini, M.; Mitchell, P.J.; Nardini, A.; Pittermann, J.; Pratt, R.B.; Sperry, J.S.; Westoby, M.; Wright, I.J.; Zanne, A.E. (2012): Global convergence in the vulnerability of forests to drought. Nature, 491, 752–755. https://doi.org/10.1038/nature11688
  9. Climate.gov. Available online: https://www.climate.gov/news-features/understanding-climate/climate-change-atmospheric-carbon-dioxide, (accessed on 30 January 2025).
  10. FAO (2024): The State of the World’s Forests 2024 – Forest-sector innovations towards a more sustainable future; FAO: Rome, Italy, https://doi.org/10.4060/cd1211en, 122.
  11. Farquhar, G.D.; Sharkey, T.D. (1982): Stomatal conductance and photosynthesis. Annu. Rev. Plant Physiol., 33, 317–345.
  12. Flexas, J.; Medrano, H. (2002): Drought‐inhibition of photosynthesis in C3 plants: stomatal and non‐stomatal limitations revisited. Ann. Bot., 89, 183–189. https://doi.org/10.1093/aob/mcf027
  13. Führer, E. (2018): A klímaértékelés erdészeti vonatkozásai. Erdészettud. Közl., 8, 27–42. (in Hungarian) https://doi.org/10.17164/EK.2018.002
  14. Hungarian Meteorological Service (HMS). Available online: https://odp.met.hu/climate/homogenized_data/gridded_data_series/daily_data_series/from_1971/, (accessed on 16 April 2025)
  15. IPCC (2023): Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]; IPCC: Geneva, Switzerland, 184. https://doi.org/10.59327/IPCC/AR6-9789291691647
  16. IUSS Working Group WRB (2022): World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps. 4th edition; International Union of Soil Sciences (IUSS): Vienna, Austria.
  17. Keresztesi, B. (1988): The Black Locust; Akadémiai Kiadó: Budapest, Hungary, 196.
  18. Klein, T. (2014): The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours. Funct. Ecol., 28, 1313–1320.https://doi.org/10.1111/1365-2435.12289
  19. Kutasy, E.; Buday-Bódi, E.; Virág, I.C.; Forgács, F.; Melash, A.A.; Zsombik, L.; Nagy, A.; Csajbók, J. (2022): Mitigating the Negative Effect of Drought Stress in Oat (Avena sativa L.) with Silicon and Sulphur Foliar Fertilization. Plants, 11, https://doi.org/10.3390/plants11010030
  20. Lange, C.A.; Knoche, D.; Hanschke, R.; Löffler, S.; Schneck, V. (2022): Physiological Performance and Biomass Growth of Different Black Locust Origins Growing on a Post-Mining Reclamation Site in Eastern Germany. Forests, 13, https://doi.org/10.3390/f13020315
  21. Liu, B.; Tang, X.; Wang, L.; Zhang, P.; He, J.; Yue, C. (2024): Physiological responses of a black locust plantation to drought stress based on a throughfall exclusion experiment in semi-arid northwestern China. Forestry, https://doi.org/10.1093/forestry/cpae027.
  22. Mantovani, D.; Veste, M.; Freese, D. (2014): Black locust (Robinia pseudoacacia L.) ecophysiological and morphological adaptations to drought and their consequence on biomass production and water-use efficiency. N.Z.J. For. Sci., 44, https://doi.org/10.1186/s40490-014-0029-0.
  23. Martínez‐Vilalta, J.; Garcia‐Forner, N. (2017): Water potential regulation, stomatal behaviour and hydraulic transport under drought: deconstructing the iso/anisohydric concept. Plant Cell Environ., 40, 962–976. https://doi.org/10.1111/pce.12846
  24. Martínez‐Vilalta, J.; Poyatos, R.; Aguadé, D.; Retana, J.; Mencuccini, M. (2014): A new look at water transport regulation in plants. New Phytol., 204, 105–115. https://doi.org/10.1111/nph.12912
  25. Mathur, S.; Agrawal, D.; Jajoo, A. (2014): Photosynthesis: response to high temperature stress. J. Photochem. Photobiol. B, 137, 116–126. https://doi.org/10.1016/j.jphotobiol.2014.01.010
  26. Mátyás, C.; Berki, I.; Bidló, A.; Csóka, G.; Czimber, K.; Führer, E.; Gálos, B.; Gribovszki, Z.; Illés, G.; Hirka, A.; Somogyi, Z. (2018): Sustainability of forest cover under climate change on the temperate-continental xeric limits. Forests, 9, https://doi.org/10.3390/f9080489.
  27. McDowell, N.; Pockman, W.T.; Allen, C.D.; Breshears, D.D.; Cobb, N.; Kolb, T.; Plaut, J.; Sperry, J.; West, A.; Williams, D.G.; Yepez, E.A. (2008): Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol., 178, 719–739. https://doi.org/10.1111/j.1469-8137.2008.02436.x
  28. McDowell, N.G.; Allen, C.D.; Anderson-Teixeira, K.; Aukema, B.H.; Bond-Lamberty, B.; Chini, L.; Clark, J.S.; Dietze, M.; Grossiord, C.; Hanbury-Brown, A.; Hurtt, G.C.; Jackson, R.B.; Johnson, D.J.; Kueppers, L.; Lichstein, J.W.; Ogle, K.; Poulter, B.; Pugh, T.A.M.; Seidl, R.; Turner, M.G.; Uriarte, M.; Walker, A.P.; Xu, C. (2020): Pervasive shifts in forest dynamics in a changing world. Science, 368, https://doi.org/10.1126/science.aaz9463
  29. Meng, F.; Peng, M.; Pang, H.; Huang, F. (2014): Comparison of photosynthesis and leaf ultrastructure on two black locust (Robinia pseudoacacia L.). Biochem. Syst. Ecol., 55, 170–175. https://doi.org/10.1016/j.bse.2014.03.025
  30. Messier, C.; Baker, C.; Carreiras, J.M.B.; Pearson, T.R.H.; Vasconcelos, M.J. (2022): Warning: Natural and Managed Forests are Losing their Capacity to Mitigate Climate Change. For. Chron., 98, 2–8. https://doi.org/10.5558/tfc2022-007
  31. National Forest Data Base (2023): Available online: https://foldalap.am.gov.hu/Magyarorszag_erdeivel_kapcsolatos_adatok_news_513, (accessed on 27 January 2025).
  32. Nicolescu, V.N.; Hernea, C.; Bakti, B.; Keserű, Z.; Antal, B.; Rédei, K. (2018): Black locust (Robinia pseudoacacia L.) as a multi-purpose tree species in Hungary and Romania: a review. J. For. Res., 29, 1449–1463. https://doi.org/10.1007/s11676-018-0626-5
  33. Nicolescu, V.N.; Rédei, K.; Mason, W.L.; Vor, T.; Pöetzelsberger, E.; Bastien, J.C.; Brus, R.; Benčať, T.; Đodan, M.; Cvjetkovic, B.; Andrašev, S.; La Porta, N.; Lavnyy, V.; Mandžukovski, D.; Petkova, K.; Roženbergar, D.; Wąsik, R.; Mohren, G.M.J.; Monteverdi, M.C.; Musch, B.; Klisz, M.; Perić, S.; Keça, L.; Bartlett, D.; Hernea, C.; Pástor, M. (2020): Ecology, growth and management of black locust (Robinia pseudoacacia L.), a non-native species integrated into European forests. J. For. Res., 31, 1081–1101. https://doi.org/10.1007/s11676-020-01116
  34. Pethő, M. (1998): A növényélettan alapjai; Akadémiai Kiadó: Budapest, Hungary, 176. (in Hungarian)
  35. Pivovaroff, A.L.; Pasquini, S.C.; De Guzman, M.E.; Alstad, K.P.; Stemke, J.S.; Santiago, L.S. (2016): Multiple strategies for drought survival among woody plant species. Funct. Ecol., 30, 517–526. https://doi.org/10.1111/1365-2435.12518
  36. Pretzsch, H.; Schütze, G.; Uhl, E. (2012): Resistance of European tree species to drought stress in mixed versus pure forests: evidence of stress release by inter‐specific facilitation. Plant Biol., 15, 483–495. https://doi.org/10.1111/j.1438-8677.2012.00670.x
  37. Ruehr, N.K.; Gast, A.; Weber, C.; Daub, B.; Arneth, A. (2016): Water availability as dominant control of heat stress responses in two contrasting tree species. Tree Physiol., 36, 164–178. https://doi.org/10.1093/treephys/tpv102
  38. Sanchez-Martinez, P.; Mencuccini, M.; García-Valdés, R.; Hammond, W.M.; Serra-Diaz, J.M.; Guo, W.Y.; Segovia, R.A.; Dexter, K.G.; Svenning, J-C.; Allen, C.; Martínez-Vilalta, J. (2023): Increased hydraulic risk in assemblages of woody plant species predicts spatial patterns of drought-induced mortality. Nat. Ecol. Evol., 7, 1620–1632. https://doi.org/10.1038/s41559-023-02180-z
  39. Sancho-Knapik, D.; Mendoza-Herrer, O.; Alonso-Forn, D.; Saz, M.A.; Martín-Sánchez, R.; dos Santos Silva, J.V.; Ogee, J.; Peguero-Pina, J.J.; Gil-Pelegrín, E.; Ferrio, J.P. (2022): Vapor pressure deficit constrains transpiration and photosynthesis in holm oak: A comparison of three methods during summer drought. Agric. For. Meteorol., 327, https://doi.org/10.1016/j.agrformet.2022.109218
  40. Shirke, P.A.; Pathre, U.V. (2004): Influence of leaf-to-air vapour pressure deficit (VPD) on the biochemistry and physiology of photosynthesis in Prosopis juliflora. J. Exp. Bot., 55, 2111–2120. https://doi.org/10.1093/jxb/erh229
  41. Tanner, C.B.; Sinclair, T.R. (1983): Efficient water use in crop production: Research or Re-search? In: Limitations to Efficiency Water Use in Crop Production Limitations to Efficient Water Use in Crop Production; Taylor, H.M.; Jordan, W.R. and Sinclair, T.R. (Eds.); American Society of Agronomy: Madison, Wisconsin, USA, 1–27.
  42. Tardieu, F.; Simonneau, T. (1998): Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric behaviours. J. Exp. Bot., 49, 419–432.
  43. Vítková, M.; Müllerová, J.; Sádlo, J.; Pergl, J.; Pyšek, P. (2017): Black locust (Robinia pseudoacacia) beloved and despised: A story of an invasive tree in Central Europe. For. Ecol. Manag., 384, 287–302.https://doi.org/10.1016/j.foreco.2016.10.057
  44. Williams, A.P.; Allen, C.D.; Macalady, A.K.; Griffin, D.; Woodhouse, C.A.; Meko, D.M.; Swetnam, T.W.; Rauscher, S.A.; Seager, R.; Grissino-Mayer, H.D.; Dean, J.S.; Cook, E.R.; Gangodagamage, C.; Cai, M.; McDowell, N.G. (2013): Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Clim. Change, 3, 292–297. https://doi.org/10.1038/NCLIMATE1693
  45. Yan, X.; Zhang, Z.; Zhao, X.; Huang, M.; Wu, X.; Guo, T. (2024): Differentiated responses of plant water use regulation to drought in Robinia pseudoacacia plantations on the Chinese Loess Plateau. Agric. Water Manag., 291, https://doi.org/10.1016/j.agwat.2023.108659.