Articles

The status of conservation and management of indigenous sheep breeds in South Africa - A review

Published:
2024-06-03
Authors
View
Keywords
License

Copyright (c) 2024 by the Author(s)

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

How To Cite
Selected Style: APA
Motaung, T. G., Osotsi, J. M., Mujitaba, . M. A., Wanjala, G., & Novotni-Dankó, G. (2024). The status of conservation and management of indigenous sheep breeds in South Africa - A review. Acta Agraria Debreceniensis, 1, 79-91. https://doi.org/10.34101/actaagrar/1/13780
Abstract

Indigenous sheep breeds in South Africa play an important role in local food security and they are adapted to local conditions. Their genetic and cultural values have to be recognised for national importance. The conservation of these breeds is very critical as most of them are already classified as endangered. The South African government has the initiative to attempt the conservation of these animals; however, it comes with several challenges. In addition to funding, breed conservation demands farmers to understand and recognise the role of such breeds in society. This is especially crucial in the rural communal lands where breeds are kept. Farmers that raise indigenous breeds should be taught the necessity of maintaining the purity of these breeds. Indigenous sheep breeds in South Africa are not favored by the commercial farmers and thus they are more vulnerable. This review outlines the nature of sheep farming and the conservation status of four indigenous sheep breeds in South Africa. The effort and challenges that are met in current conservation arrangements are discussed. Moreover, we emphasise on the conservation techniques that are employed in South Africa.

References
  1. Abu, E.S. (2021): Review on population status and conservation activity of indigenous cattle breeds of Ethiopia. American Journal of Zoology, 4(3), pp. 32–39. doi: 10.11648/j.ajz.20210403.12
  2. Adekunmi, A.O.; Ayinde, J.O.; Ajala, A.O. (2017): An assessment of animal protein consumption patterns among rural dwellers in Osun state, Nigeria. Ife Journal of Agriculture, 29(1), pp. 84–94. https://eprints.lmu.edu.ng/id/eprint/1038
  3. Adeniji, Y.A.; Sanni, M.O.; Abdoun, K.A.; Samara, E.M.; Al-Badwi, M.A.; Bahadi, M.A.; Alhidary, I.A.; Al-Haidary, A.A. (2020): Resilience of lambs to limited water availability without compromising their production performance. Animals, 10(9), p.1491. https://doi.org/10.3390/ani10091491
  4. Almeida, A.M. (2011): The Damara in the Context of Southern Africa Fat-Tailed Sheep Breeds. Tropical Anim. Health and Prod., 43(7): 1427–41. DOI 10.1007/s11250-011-9868-3
  5. Barczak, E.; Wolc, A.; Wójtowski, J.; Slosarz, P.; Szwaczkowski, T. (2009): Inbreeding and inbreeding depression on body weight in sheep. J. Anim. Feed Sci, 18(1), pp.42–50. DOI: https://doi.org/10.22358/jafs/66366/2009
  6. Bolton, R.L.; Mooney, A.; Pettit, M.T.; Bolton, A.E.; Morgan, L.; Drake, G.J.; Appeltant, R.; Walker, S.L.; Gillis, J.D.; Hvilsom, C. (2022): Resurrecting biodiversity: Advanced assisted reproductive technologies and biobanking. Reproduction and Fertility, 3(3), 121–146. https://doi.org/10.1530/RAF-22-0005
  7. Burger, I.; Julien, A.R.; Kouba, A.J.; Barber, D.; Counsell, K.R.; Pacheco, C.; Krebs, J.; Kouba, C.K. (2021): Linking in‐situ and ex‐situ populations of threatened amphibians through genome banking. Conservation Science and Practice, 3(11), p.e525. https://doi.org/10.1111/csp2.525
  8. Burger, A.; Hoffman, L.C.; Cloete, J.J.E.; Muller, M.; Cloete, S.W.P. (2013): Carcass composition of Namaqua Afrikaner, Dorper and SA Mutton Merino ram lambs reared under extensive conditions. South African Journal of Animal Science, 43(5), pp. S27–S32. DOI:10.4314/sajas. v43i5.5
  9. Buduram, P. (2004): Genetic characterization of Southern African sheep breeds using DNA markers (Doctoral dissertation, University of the Free State). http://hdl.handle.net/11660/1470
  10. Boettcher, P.J.; Hoffmann, I.; Baumung, R.; Drucker, A.G.; McManus, C.; et al. (2014): Genetic resources and genomics for adaptation of livestock to climate change. Frontiers in Genetics, 5(DEC), 2014–2016. https://doi.org/10.3389/fgene.2014.00461
  11. Campbell, Q.P. (1995): Origin and description of the well-adapted indigenous fat-tailed and fat-rumped sheep breeds and indigenous goat breeds of South Africa. Origin and description of the well-adapted indigenous fat-tailed and fat-rumped sheep breeds and indigenous goat breeds of South Africa. https://www.cabidigitallibrary.org/doi/full/10.5555/20053140180
  12. Chagunda, M.G.; Wollny, C.B. (2003): Conserving and managing the biodiversity of Malawian farm animal genetic resources – A case of Malawi Zebu cattle. The Dynamics of Food Production Systems and Adoption of Technologies in a Village Economy, 1: 1–18.
  13. Coertze, R.D. (1986): Livestock in the social and cultural life of African communities. South African Journal of Ethnology, 9(3), pp. 129–135. https://journals.co.za/doi/pdf/10.10520/AJA02580144_309
  14. Cornelius, P. (2023): Market trends in Beef and Mutton. Red Meat/Rooivleis (AFR & ENG), 14(1), pp. 12–14. https://hdl.handle.net/10520/ejc-ac_redm_v14_n1_a6.
  15. Davidescu, M.A.; Pânzaru, C.; Usturoi, A.; Radu-Rusu, R.M.; Creangă, Ș. (2023): An Appropriate Genetic Approach to Endangered Podolian Grey Cattle in the Context of Preserving Biodiversity and Sustainable Conservation of Genetic Resources. Agriculture, 13(12), p.2255. https://doi.org/10.3390/agriculture13122255
  16. DALRRD (2021): A profile of the South African mutton market value chain. Available at http://webapps1.daff.gov.za/AmisAdmin/upload/Mutton%20Market%20Value%20Chain%20Profile%202021.pdf (day accessed, 20 January 2024).
  17. Doekes, H.P.; Bijma, P.; Windig, J.J. (2021): How depressing is inbreeding? A meta-analysis of 30 years of research on the effects of inbreeding in livestock. Genes, 12(6), p.926. https://doi.org/10.3390/genes12060926
  18. de Boer, R.A.; Vega-Trejo, R.; Kotrschal, A.; Fitzpatrick, J.L. (2021): Meta-analytic evidence that animals rarely avoid inbreeding. Nature Ecology & Evolution, 5(7), pp. 949–964. https://doi.org/10.1038/s41559-021-01453-9
  19. Ebel, E.R.; Phillips, P.C. (2016): Intrinsic differences between males and females determine sex-specific consequences of inbreeding. BMC Evolutionary Biology, 16, pp. 1–10. DOI 10.1186/s12862-016-0604-5
  20. Epstein, H. (1960): History and origin of the Ronderib and Namaqua Afrikaner sheep. Zeitschrift fur Tierzuchtung und Zuchtungsbiologie, 74, pp. 267–292. /doi/full/10.5555/19610102121
  21. FAO (2012): Section 8 collection of germplasm and tissues. In: Cryoconservation of animal genetic resources, animal production and health guideline. Retrieved from: http://www.fao.org/3/i3017e/i3017e00.pdf. on February 02, 2024.
  22. FAO, D. (2022): Domestic Animal Diversity Information System (DAD-IS). Food and Agriculture Organization https://www. fao. org/dad-is/browse-by-country-and-species/en/ (ET 02.08. 2022).
  23. Fraser, L.M.; Badenhorst, S. (2014): Livestock use in the Limpopo Valley of southern Africa during the Iron Age. The South African Archaeological Bulletin, 69. pp. 192–198. https://www.jstor.org/stable/43868714
  24. Hasani, N.; Ebrahimi, M.; Ghasemi-Panahi, B.; HosseinKhani, A. (2018): Evaluating reproductive performance of three estrus synchronization protocols in Ghezel ewes. Theriogenology, 122, pp. 9–13. https://doi.org/10.1016/j.theriogenology.2018.07.005
  25. Halimani, T.; Marandure, T.; Chikwanha, O.C.; Molotsi, A.H.; Abiodun, B.J.; Dzama, K.; Mapiye, C. (2021): Smallholder sheep farmers’ perceived impact of water scarcity in the dry ecozones of South Africa: Determinants and response strategies. Climate Risk Management, 34, p.100369. https://doi.org/10.1016/j.crm.2021.100369
  26. Herrero, M.; Grace, D.; Njuki, J.; et al. (2013): The role of livestock in developing countries. Animal. 7(s1):3–18. doi:10.1017/S1751731112001954
  27. Hoffmann, I. 2011. Livestock Biodiversity and Sustainability. Livestock Science 139(1–2): 69–79. https://doi.org/10.1016/j.livsci.2011.03.016
  28. Horsburgh, K.A.; Beckett, D.B.; Gosling, A.L. (2022): Maternal Relationships among Ancient and Modern Southern African Sheep: Newly Discovered Mitochondrial Haplogroups. Biology, 11(3), p. 428. https://doi.org/10.3390/biology11030428
  29. Hoag, C. (2018): The ovicaprine mystique: livestock commodification in postindustrial Lesotho. American Anthropologist, 120(4), pp. 725–737. https://doi.org/10.1111/aman.13119
  30. Ilie, D.E.; Kusza, S.; Sauer, M.; Gavojdian, D. (2018): Genetic characterization of indigenous goat breeds in Romania and Hungary with a special focus on genetic resistance to mastitis and gastrointestinal parasitism based on 40 SNPs. PLoS One, 13(5), p.e0197051. https://doi.org/10.1371/journal.pone.0197051
  31. IUCN (2012): IUCN Red List Categories and Criteria: Vol. Vesrion 3.1. (Seocnd edition). Gland, Switzerland and Cambridge, UK: IUCN.
  32. Joy, A.; Dunshea, F.R.; Leury, B.J.; Clarke, I.J.; DiGiacomo, K.; Chauhan, S.S. (2020): Resilience of small ruminants to climate change and increased environmental temperature: A review. Animals, 10(5), p. 867. https://doi.org/10.3390/ani10050867
  33. Kamara, A.; Conteh, A.; Rhodes, E.R.; Cooke, R.A. (2019): The relevance of smallholder farming to African agricultural growth and development. African Journal of Food, Agriculture, Nutrition and Development, 19(1), pp. 14043–14065. https://doi.org/10.18697/ajfand.84.BLFB1010
  34. Kandiwa, E.; Nguarambuka, U.; Chitate, F.; Samkange, A.; Madzingira, O.; Mbiri, P.; Bishi, A.S.; Mushonga, B. (2020): Production performance of sheep and goat breeds at a farm in a semi-arid region of Namibia. Tropical Animal Health and Production, 52, pp. 2621–2629. https://doi.org/10.1007/s11250-020-02283-w
  35. Klein, R.; Oláh, J.; Mihók, S.; Posta, J. (2022): Pedigree-Based Description of Three Traditional Hungarian Horse Breeds. Animals, 12(16), p. 2071. https://doi.org/10.3390/ani12162071
  36. Kijas, J.W.; Hayes, B.; Boitard, S.; Porto Neto, I.R.; San Cristobal, M.; et al. (2012): Genome-Wide Analysis of the World’s Sheep Breeds Reveals High Levels of Historic Mixture and Strong Recent Selection. PLoS Biology 10(2). https://doi.org/10.1371/journal.pbio.1001258
  37. Kilminster, T.F.; Greeff, J.C. (2011): A note on the reproductive performance of Damara, Dorper and Merino sheep under optimum management and nutrition for Merino ewes in the eastern wheatbelt of Western Australia. Tropical Animal Health and Production, 43, pp. 1459–1464. /10.1007/s11250-011-9871-8
  38. Korkmaz, M.K.; Yaprak, M. (2022): The Effect of Different Estrus Synchronization Methods on Reproductive Performance in Laparoscopic Artificial Insemination Program in Morkaraman Sheep. Turkish Journal of Agriculture-Food Science and Technology, 10(2), pp. 247–253. https://doi.org/10.24925/turjaf.v10i2.247-253.4639
  39. Kunene, N.W.; Bezuidenhout, C.C.; Nsahlai, I.V.; Nesamvuni, E.A. (2011): A review of some characteristics, socio-economic aspects, and utilization of Zulu sheep: implications for conservation. Tropical animal health and production, 43, pp. 1075–1079. https://link.springer.com/article/10.1007/s11250-011-9823-3
  40. Kunene, N.; Nesamvuni, E.A.; Fossey, A. (2007): Characterisation of Zulu (Nguni) Sheep Using Linear Body Measurements and Some Environmental Factors Affecting These Measurements. South African J. Anim. Sci., 37(1): 11–20. https://doi.org/10.4314/sajas.v37i1.4020
  41. Kunene, N.W.; Fossey, A. (2006): A survey on livestock production in some traditional areas of Northern Kwazulu Natal in South Africa. Livest. Res. Rural Dev, 18(113), pp. 30–33. https://www.lrrd.cipav.org.co/lrrd18/8/kune18113.htm
  42. Kunene, N.W.; Bezuidenhout, C.C.; Nsahlai, I.V. (2009): Genetic and phenotypic diversity in Zulu sheep populations: Implications for exploitation and conservation. Small Ruminant Research, 84(1–3), pp. 100–107. https://doi.org/10.1016/j.smallrumres.2009.06.012
  43. KwaZulu-Natal, South Africa, as revealed by multivariate analysis. Small Ruminant Research, 140, pp. 50–56. https://doi.org/10.1016/j.smallrumres.2016.06.001
  44. Letsoalo, P.T. (2017): Characterisation and Cryopreservation of Semen from Indigenous Namaqua Afrikaner Sheep Breed, in Comparison with Dorper and Dohne Merino Breeds (Doctoral dissertation, University of Fort Hare). http://hdl.handle.net/10353/4759
  45. Maluleke, W.; Mokwena, R.J. (2017): The effect of climate change on rural livestock farming: case study of Giyani Policing Area, Republic of South Africa. South African Journal of Agricultural Extension, 45(1), pp. 26–40. http://dx.doi.org/10.17159/2413-3221/2017/v45n1a404
  46. Maluleke, W.; Tshabalala, N.P.; Barkhuizen, J. (2020): The effects of climate change on rural livestock farming: Evidence from Limpopo Province, South Africa. Asian Journal of Agriculture and Rural Development, 10(2), p. 645. DOI: 10.18488/journal.ajard.2020.102.645.658
  47. Maqhashu, A. (2019): Characterization and evaluation of reproductive performance in Bapedi sheep breed (Doctoral dissertation, University of the Free State). http://hdl.handle.net/11660/10427
  48. Mathew, E.; Mathew, L. (2023): Conservation of landraces and indigenous breeds: An investment for the future. In: Conservation and Sustainable Utilization of Bioresources. pp. 291–321. Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-19-5841-0_12
  49. Mavule, B.S.; Muchenje, V.; Bezuidenhout, C.C.; Kunene, N.W. (2013): Morphological structure of Zulu sheep based on principal component analysis of body measurements. Small Ruminant Research, 111(1–3), pp. 23–30. https://doi.org/10.1016/j.smallrumres.2012.09.008
  50. Mavule, B.S.; Muchenje, V.; Kunene, N.W. (2013): Characterization of Zulu sheep production system: Implications for conservation and improvement. Sci. Res. Essays, 8, pp. 1226–1238. /doi/full/10.5555/20143022890
  51. Mavule, B.S.; Sarti, F.M.; Lasagna, E.; Kunene, N.W. (2016): Morphological differentiation amongst Zulu sheep populations in Maxted, N. (2013): In Situ, Ex Situ Conservation. In Encyclopedia of Biodiversity pp. 313–323. Elsevier. https://doi.org/10.1016/B978-0-12-384719-5.00049-6
  52. Meadows, J.R.S.; Li, K.; Kantanen, J.; Tapio, M.; Sipos, W.; Pardeshi, V.; Gupta, V.; et al. (2005): The mitochondrial sequence reveals high levels of gene flow between breeds of domestic sheep from Asia and Europe. J. Hered., 96 (5): 494–501. https://doi.org/10.1093/jhered/esi100
  53. Meissner, H.H.; Scholtz, M.M.; Palmer, A.R. (2013): Sustainability of the South African livestock sector towards 2050 Part 1: Worth and impact of the sector. South African Journal of Animal Science, 43(3), pp. 282–297. DOI:10.4314/sajas. v43i3.5
  54. Molotsi, A.; Dube, B.; Oosting, S.; Marandure, T.; Mapiye, C.; Cloete, S.; Dzama, K. (2017a): Genetic traits of relevance to sustainability of smallholder sheep farming systems in South Africa. Sustainability, 9(8), p. 1225. https://doi.org/10.3390/su9081225
  55. Molotsi, A.H.; Taylor, J.F.; Cloete, S.W.; Muchadeyi, F.; Decker, J.E.; Whitacre, L.K.; Sandenbergh, L.; Dzama, K. (2017b): Genetic diversity and population structure of South African smallholder farmer sheep breeds determined using the OvineSNP50 beadchip. Tropical animal health and production, 49, pp. 1771–1777. https://doi.org/10.1007/s11250-017-1392-7
  56. Molotsi, A.H.; Dube, B.; Cloete, S.W.P. (2019a): The current status of indigenous ovine genetic resources in southern Africa and future sustainable utilization to improve livelihoods. Diversity, 12(1), p.14. https://doi.org/10.3390/d12010014
  57. Molotsi, A.H.; Oosting, S.; Cloete, S.W.P.; Dzama, K. (2019b): Factors influencing off-take rates of smallholder sheep farming systems in the Western Cape Province of South Africa. South African Journal of Agricultural Extension, 47(3), pp. 83–91. http://dx.doi.org/10.17159/2413-3221/2019/v47n3a517
  58. Mthi, S.; Nyangiwe, N. (2018): Farmers perception on sheep production constraints in the communal grazing areas of the Eastern Cape Province, South Africa. International Journal of Livestock Production, 9(12), pp. 334–339. DOI: 10.5897/IJLP2018.0500
  59. Muigai, A.W.; Hanotte, O. (2013): The origin of African sheep: archaeological and genetic perspectives. African Archaeological Review, 30, pp. 39–50. https://doi.org/10.1007/s10437-013-9129-0
  60. Mujitaba, M.A.; Kútvölgyi, G.; Debnár, V.J.; Tokár, A.; Posta, J.; Bodó, S.; Vass, N. (2023): The impact of breed and retrieval methods on the quality of fresh and post-thaw ram epididymal spermatozoa. Acta Veterinaria Hungarica, 71(3–5), pp. 210–218. https://doi.org/10.1556/004.2023.00945.
  61. Mupfiga, S.; Katiyatiya, C.L.; Chikwanha, O.C.; Molotsi, A.H.; Dzama, K.; Mapiye, C. (2022): Meat production, feed, and water efficiencies of selected South African sheep breeds. Small Ruminant Research, 214, p.106746. https://doi.org/10.1016/j.smallrumres.2022.106746
  62. Mwai, O.; Hanotte, O.; Kwon, Y.; Cho, S. (2015): African Indigenous cattle: Unique genetic resources in a rapidly changing world. Asian-Austral. J. Anim. Sci., 28: 911–921.0 Part 1: Worth and impact of the sector. South African J. Anim. Sci., 43(3), 282. doi: 10.5713/ajas.15.0002R
  63. Nardone, A.; Ronchi, B.; Lacetera, N.; Ranieri, M.S.; Bernabucci, U. (2010): Effects of climate changes on animal production and sustainability of livestock systems. Livestock Science, 130(1–3), pp. 57–69. https://doi.org/10.1016/j.livsci.2010.02.011
  64. Naskar, S.;Gowane, G.R.; Chopra, A.; Paswan, C.; Prince, L.L.L. (2012): Genetic Adaptability of Livestock to Environmental Stresses. In: Sejian, V., Naqvi, S., Ezeji, T., Lakritz, J., Lal, R. (eds) Environmental Stress and Amelioration in Livestock Production. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29205-7_13
  65. Nedambale, T.L.; Mapholi, N.O.; Sebei, J.P.; O’Neill, H.A.; Nxumalo, K.S.; Nephawe, K.A.; Maqhashu, A.; Ramukhithi, F.V. (2020): Assessment of genetic variation in Bapedi sheep using microsatellite markers. South African Journal of Animal Science, 50(2), pp. 318–324. DOI: 10.4314/sajas. v50i2.15
  66. Nesamvuni, A.E.; Ndwambi, K.; Tshikolomo, K.A.; Lekalakala, G.R.; Raphulu, T.; Petja, B.M.; Van Niekerk, J. (2022): Small-holder farmers knowledge and information on the impact of climate variability & extremes on livestock production in Limpopo & Mpumalanga Provinces. Technium Soc. Sci. J., 27, p. 854. DOI: https://doi.org/10.47577/tssj.v27i1.5299
  67. Ngcobo, J.N.; Nedambale, T.L.; Nephawe, K.A.; Chokoe, T.C.; Ramukhithi, F.V. (2023): Effects of Dietary Flaxseed Oil and Ascorbic Acid on the Reproductive Performance of South African Indigenous Sheep. Ruminants, 3(1), pp. 9–24. https://doi.org/10.3390/ruminants3010002
  68. Ngcobo, J.N.; Nedambale, T.L.; Nephawe, K.A.; Mpofu, T.J.; Chokoe, T.C.; Ramukhithi, F.V. (2022): An Update on South African Indigenous Sheep Breeds’ Extinction Status and Difficulties during Conservation Attempts: A Review. Diversity, 14(7), p. 516. https://doi.org/10.3390/d14070516
  69. Ntsiapane, A.D.; Swanepoel, J.W.; Nesamvuni, A.E.; Ojo, T.O. (2023): Assessing the efficiency of smallholder wool farmers in the changing paradigms of the Free State province of South Africa. South African Journal of Animal Science, 53(1), pp. 125–132. DOI:10.4314/sajas. v53i1.14
  70. Ntuli, L.; Fourie, P.J. (2021): Appraisal of the management practices of goat farmers in selected districts of the KwaZulu-Natal province: can the extensionist play a role in improving? South African Journal of Agricultural Extension, 49(2), pp. 84–96. http://dx.doi.org/10.17159/2413-3221/2021/v49n2a12805
  71. Nxumalo, K.S.; Grobler, P.; Ehlers, K.; Nesengani, L.T.; Mapholi, N.O. (2022): The Genetic Assessment of South African Nguni Sheep Breeds Using the Ovine 50K Chip. Agriculture, 12(5), p. 663. https://doi.org/10.3390/agriculture12050663
  72. Ovaska, U.; Bläuer, A.; Kroløkke, C.; Kjetså, M.; Kantanen, J.; Honkatukia, M. (2021): The conservation of native domestic animal breeds in Nordic countries: From genetic resources to cultural heritage and good governance. Animals, 11(9), p. 2730. https://doi.org/10.3390/ani11092730
  73. Paramio, M.T.; Izquierdo, D. (2016): Recent advances in in vitro embryo production in small ruminants. Theriogenology, 86(1), 152–159. https://doi.org/10.1016/j.theriogenology.2016.04.027
  74. Peretti, V.; Ciotola, F.; Iannuzzi, L. (2013): Characterization, conservation, and sustainability of endangered animal breeds in Campania (Southern Italy). Natural Science, 5, 1–9. DOI: 10.4236/ns.2013.55A001
  75. Peters, F.W.; Kotze, A.; van der Bank, F.H.; Soma, P.; Grobler, J.P. (2010): Genetic Profile of the Locally Developed Meatmaster Sheep Breed in South Africa Based on Microsatellite Analysis. Small Rum. Research 90(1–3): 101–8. https://doi.org/10.1016/j.smallrumres.2010.02.005
  76. Qwabe, S.O.; van Marle-Köster, E.; Visser, C. (2013): Genetic diversity and population structure of the endangered Namaqua Afrikaner sheep. Tropical animal health and production, 45, pp. 511–516. https://doi.org/10.1007/s11250-012-0250-x
  77. Ramljak, J.; Ivanković, A.; Veit‐Kensch, C.E.; Förster, M.; Medugorac, I. (2011): Analysis of genetic and cultural conservation value of three indigenous Croatian cattle breeds in a local and global context. Journal of Animal Breeding and Genetics, 128(1), pp. 73–84. https://doi.org/10.1111/j.1439-0388.2010.00905.x
  78. Ramsey, K.H.; Harris, L.; Kotze, A. (2000): Landrace breeds: South Africa’s indigenous and locally developed farm animals. Pretoria, South Africa. Farm Animal Conservation Trust. g/doi/full/10.5555/20053140178
  79. Salami, A.; Kamara, A.B.; Brixiova, Z. (2010): Smallholder agriculture in East Africa: Trends, constraints, and opportunities (p. 52). Tunis, Tunisia: African Development Bank. https://docs.igihe.com/IMG/pdf/working_105_pdf_d.pdf
  80. Sandenbergh, L.; Cloete, S.W.P.; Olivier, J.J. (2018): February. Assessing the occurrence of hybridisation in endangered indigenous sheep. In Proceedings of the 11th World Congress on Genetics Applied to Livestock Production, Auckland, New Zealand. pp. 11–16. http://dx.doi.org/10.4314/sajas.v46i1.11
  81. Schoeman, S.J.; Cloete, S.W.P.; Olivier, J.J. (2010):. Returns on investment in sheep and goat breeding in South Africa. Livestock Science, 130(1–3), pp. 70–82. https://doi.org/10.1016/j.livsci.2010.02.012
  82. Sejian, V., Naqvi, S.M.K.; Ezeji, T.; Lakritz, J.; Lal, R. (2013): Environmental stress and amelioration in livestock production. In: Environmental Stress and Amelioration in Livestock Production. /10.1007/978-3-642-29205-7
  83. Selepe, M.M.; Ceccobelli, S.; Lasagna, E.; Kunene, N.W. (2018): Genetic structure of South African Nguni (Zulu) sheep populations reveals admixture with exotic breeds. PloS one, 13(4), p.e0196276. https://doi.org/10.1371/journal.pone.0196276
  84. Selepe, M.M.; Ceccobelli, S.; Lasagna, E.; Kunene, N.W. (2018): Genetic structure of South African Nguni (Zulu) sheep populations reveals admixture with exotic breeds. PloS one, 13 (4): 1–15 https://doi.org/10.1371/journal.pone.0196276
  85. Seregi, J.; Kovács, Á.; Rozgits, K. (2015): June. Data about the Hungarian indigenous breed, examination of Racka sheep meat. In 26th international DAGENE SYMPOSIUM 2015 17th–19th June 2015 Hotel Vita, Terme DOBRNA, DOBRNA, SLOVENIA (p. 73). Available at https://www.genska-banka.si/wp-content/uploads/2018/08/DAGENE2015_proceedings.pdf#page=73
  86. Simasiku, L.; Charamba, V.; Lutaaya, E. (2019): Modeling and comparison of the maturing rates of Damara, Dorper and Swakara sheep at Neudamm Farm. Welwitschia International Journal of Agricultural Sciences, 1, pp. 41–48. https://doi.org/10.32642/wijas.v1i0.1367
  87. Smith, A.B. (2006): The origins of the domesticated animals of southern Africa. In: The Origins and Development of African Livestock. pp. 222–238. Routledge. https://doi.org/10.4324/9780203984239
  88. Snyman, M.A.; Olivier, J.J.; Cloete, J.A.N.; Buys, T.; Jonker, M.L. (2005): October. Conservation of the Namaqua Afrikaner by the Department of Agriculture. In 6th Global Conference on the Conservation of Domestic Animal Genetic Resources, Magalies Park, South Africa. pp. 9–13. Available online: https://gadi.dalrrd.gov.za (accessed on 20 Dec 2023).
  89. Soma, P.; Kotze, A.; Grobler, J.P.;Van Wyk, J.B. (2012): South African Sheep Breeds: Population Genetic Structure and Conservation Implications. Small Rum. Research, 103(2–3): 112–119. DOI: 10.1016/j.smallrumres.2011.09.041
  90. Srivastava, A.K.; Patel, J.B.; Ankuya, K.J.; Chauhan, H.D.; Pawar, M.M.; Gupta, J.P. (2019): Conservation of indigenous cattle breeds. Journal of Animal Research, 9(1), pp. 1–12. DOI: 10.30954/2277-940X.01.2019.1
  91. Taberlet, P.; Valentini, A.; Rezaei, H.R.; Naderi, S.; Pompanon, F.; Negrini, R.; Ajmone‐Marsan, P. (2008): Are cattle, sheep, and goats endangered species? Molecular Ecology, 17(1), pp. 275–284. https://doi.org/10.1111/j.1365-294X.2007.03475.x
  92. Trzcińska, M.; Samiec, M.; Duda, M. (2023): Creating Ex Situ Protected Bioreservoirs as a Powerful Strategy for the Reproductive Biotechnology-Mediated Rescue of Threatened Polish Livestock Breeds. Agriculture, 13(7), p.1426. https://doi.org/10.3390/agriculture13071426
  93. van der Merwe, D.A.; Brand, T.S.; Hoffman, L.C. (2020): Premium lamb production of South African sheep breed types under feedlot conditions. South African Journal of Animal Science, 50(4), pp. 578–587. DOI:10.4314/sajas. v50i4.9
  94. van der Merwe, D.A.; Brand, T.S.; Theron, P.G.; Hoffman, L.C.; Jackson-Moss, C.A. (2021): Sheepskin leather quality characteristics of South African breeds. Small Ruminant Research, 199, p.106365. https://doi.org/10.1016/j.smallrumres.2021.106365
  95. van Harten, S.; Kilminster, T.; Scanlon, T.; Milton, J.; Oldham, C.; Greeff, J.; Almeida, A.M. (2016): Fatty acid composition of the ovine longissimus dorsi muscle: effect of feed restriction in three breeds of different origin. Journal of the Science of Food and Agriculture, 96(5), pp. 1777–1782. https://doi.org/10.1002/jsfa.7285
  96. van Marle-Köster, E.; Visser, C. (2018): Genetic improvement in South African livestock: can genomics bridge the gap between the developed and developing sectors? Frontiers in Genetics, 9, p. 331. https://doi.org/10.3389/fgene.2018.00331
  97. van Marle-Koster, E.S.T.E.; Snyman, G. (2013): Saving the endangered Namaqua Afrikaner sheep breed ln south Africa through conservation and utilization. biotechnologies at work for smallholders: case studies from south Africa. Available at www.fao.org/ publications.
  98. Webb, C. (2021): Liberating the family: Debt, education, and racial capitalism in South Africa. Environment and Planning D: Society and Space, 39(1), pp. 85–102. https://doi.org/10.1177/0263775820942522
  99. Wickedfood Earth (2024): https://wickedfoodearth.co.za/about-us/animals/pedi-sheep-2/
  100. Xulu, T.G.; Ezeokoli, O.T.; Gupta, A.K.; Mienie, C.; Bezuidenhout, C.C.; Kunene, N.W. (2020): Spatio-seasonal variations in the faecal bacterial community of Zulu sheep grazing in communally managed rangeland. South African Journal of Science, 116(1–2), pp. 1–9. http://dx.doi.org/10.17159/sajs.2020/6313
  101. Yang, G.; Zhang, M.; Xie, Z.; Li, J.; Ma, M.; Lai, P.; Wang, J. (2021): Quantifying the Contributions of Climate Change and Human Activities to Water Volume in Lake Qinghai, China. Remote Sensing, 14(1), p. 99. https://doi.org/10.3390/rs14010099
  102. Zsolnai, A.; Maróti-Agóts, Á.; Kovács, A.; Bâlteanu, A.V.; Kaltenecker, E.; Anton, I. (2020): Genetic position of Hungarian Grey among European cattle and identification of breed-specific markers. Animal, 14(9), pp. 1786–1792. DOI: https://doi.org/10.1017/S1751731120000634