Gépészeti és járműmérnöki tudományok

Pure Bending of Homogenous Isotropic Elastic Curved Beam

Megjelent:
2023-12-30
Szerzők
Megtekintés
Kulcsszavak
Licenc

Copyright (c) 2023 Dr. Ecsedi István, Attila Baksa, Marwen Habbachi

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Hogyan hivatkozzuk
Kiválasztott formátum: APA
Ecsedi, I., Baksa, A., & Habbachi, M. (2023). Pure Bending of Homogenous Isotropic Elastic Curved Beam. International Journal of Engineering and Management Sciences, 8(4), 67-75. https://doi.org/10.21791/IJEMS.2023.038
Absztrakt

In this paper a detailed analysis is given for the pure bending problem of curved beams. The material of the curved beam is homogenous isotropic linearly elastic. The mantle of the curved beam is stress free and there is no body force on the curved beam. The plane of the curvature of the beam is the plane of symmetry for the whole beam. Paper gives the expressions of circumferential and radial normal stresses. A strength of material approach is used to derive the governing equations. A numerical example illustrates the application of the presented solutions. 

Hivatkozások
  1. J.R. Barber, Intermediate Mechanics of Materials. Second Edition. Springer Berlin, 2011.
  2. P.P. Benham, B.G. Neal, Elementary Mechanics of Solids. The Commonwealth and International
  3. Library, Structure and Solid Mechanics, 1965.
  4. A.C. Ugural, S.K. Fenster, Advanced Strength and Applied Elasticity. The SI version. Elsevier, North
  5. Holland, New York, 1981.
  6. A.D. Saada, Elasticity: Theory and Applications. Elsevier, 2013.
  7. J.D. Renton, Elastic Beams and Frames, Woodhead Publishing, Oxford, 2002.
  8. I. Ecsedi, K. Dluhi, A linear model for the static and dynamic analysis of non-homogeneous curved
  9. beam. Applied Mathematical Modelling, Vol. 29, No. 12, pp. 1211-1231, 2005.
  10. J.G. Pissarenko, A. Yakovlev, V. Matrear, Aide-memoire de resistance des materiaux, Editions Mir,
  11. Moscow, 1979.
Adatbázis logók