Mechanical and Vehicle Engineering

Investigating the Effects of Active Cooling in 3D Printing

Published:
October 14, 2022
Author
View
Keywords
License

Copyright (c) 2022 Péter Ficzere

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

How To Cite
Selected Style: APA
Ficzere, P. (2022). Investigating the Effects of Active Cooling in 3D Printing. International Journal of Engineering and Management Sciences, 7(2), 39-47. https://doi.org/10.21791/IJEMS.2022.2.3.
Abstract

3D printing is an increasingly widespread manufacturing process. With the development of machines and materials, the technology is becoming more accessible and easier to use. However, the technology's specificities mean that it requires knowledge of manufacturing technology. In some cases, it is necessary to solidify the freshly deposited layers as soon as possible in the event of large overhangs. This can be achieved by active cooling, which in turn can affect the material properties of the part. This research investigates the effects of active cooling during production. 

 

References
  1. Ficzere, P., Borbás, L., Török, Á., Economical investigation of rapid prototyping. International Journal For Traffic And Transport Engineering 3 : 3 pp. 344-350. , 7 p. (2013), DOI: 10.7708/ijtte.2013.3(3).09
  2. Ilyés, K., Kovács, N.K., Balogh, A., Borbás, E., Farkas, B., Casian, T., Marosi, Gy., Tomuță, I., Nagy, Zs.K., The applicability of pharmaceutical polymeric blends for the fused deposition modelling (FDM) 3D technique: Material considerations–printability–process modulation, with consecutive effects on in vitro release, stability and degradation, European Journal of Pharmaceutical Sciences, Volume 129, 2019, Pages 110-123, ISSN 0928-0987, https://doi.org/10.1016/j.ejps.2018.12.019.
  3. Ficzere, P., Effect of 3D printing direction on manufacturing costs of automotive parts, International Journal For Traffic And Transport Engineering 11 : 1 pp. 94-101. , 8 p. (2021), DOI: 10.7708/ijtte.2021.11(1).05
  4. Kmetz, B., Takács, Á., Designing a filament recycling extruder, Design of Machines And Structures, 11: 2 pp. 46-52. , 7 p. (2021), DOI: 10.32972/dms.2021.006
  5. Ficzere, P., The Impact of the Positioning of Parts on the Variable Production Costs in the Case of Additive Manufacturing”, Periodica Polytechnica Transportation Engineering. (2022) https://doi.org/10.3311/PPtr.15827
  6. Ádám, B., Weltsch, Z., Thermal and Mechanical Assessment of PLA-SEBS and PLA-SEBS-CNT Biopolymer Blends for 3D Printing, Applied Sciences-Basel 11 : 13 p. 6218 (2021), https://doi.org/10.3390/app11136218
  7. Ficzere, P., Orthotrop anyagmodell alkalmazása additív gyártástechnológiával előállított alkatrész méretezése során [Usage of orthotrop material law for additive manufacturing in part design], GÉP 67 : 5-6 pp. 78-81. , 4 p. (2016)
  8. Ficzere, P., Experimental Dynamical Analysis and Numerical Simulation of the Material Properties of Parts Made by Fused Deposition Modelling Technologies, Periodica Polytechnica Transportation Engineering, 48(3), pp. 221–225. (2020) https://doi.org/10.3311/PPtr.13947
  9. Ficzere, P., Székely, P.,Alakoptimált futóműalkatrész járműdinamikai vizsgálata macskaköves út esetén [Vehicle dynamic study of shape optimized suspension part in case of cobblestone road], GÉP 67 : 5-6 pp. 74-77. , 4 p. (2016)
  10. Alkentar, R., Huri, D., Mankovits, T. (2022). Numerical Investigation of 3D Lattice Infill Pattern Cellular Structure for Orthopedic Implant Design. In: Rackov, M., Mitrović, R., Čavić, M. (eds) Machine and Industrial Design in Mechanical Engineering. KOD 2021. Mechanisms and Machine Science, vol 109. Springer, Cham. https://doi.org/10.1007/978-3-030-88465-9_45
  11. https://imgur.com/a/dZa9Y (Letöltve: 2022. 03. 01.)
  12. Ficzere, P., Lukacs, N.L., Borbas, L., The Investigation of Interlaminar Failures Caused by Production Parameters in Case of Additive Manufactured Polymers, POLYMERS 13 : 4 p. 556 (2021), https://doi.org/10.3390/polym13040556
Database Logos