The Future of AI-Integrated Project Management: A Structured Literature Review Based Risk Identification
Authors
View
Keywords
License
Copyright (c) 2025 Muhammad Adnan Siddiqui, Muhammad Wasif

This work is licensed under a Creative Commons Attribution 4.0 International License.
How To Cite
Accepted 2025-12-15
Published 2025-12-21
Abstract
The evolution of AI is changing the landscape of project management. The integration of AI into project management brings many advantages, yet it is also accompanied by prominent weaknesses and serious challenges. In addition, rapidly evolving technologies continue to transform the field’s dynamics. These evolving dynamics result in ambiguity about the current state of the field, and consequently, create an uncertainty regarding a roadmap for future advancements. The purpose of this paper is to address this challenge by developing a well-grounded conceptual insight that identifies the risks associated with AI adoption in project management, guiding both academia and industry towards a structured approach to its future advancements. This paper conducts a detailed structured literature review, adhering the PRISMA protocol, to evaluate the impact of AI on key facets of project management, its potential benefits and implementation challenges. Then it analyzes the literature and synthesizes the key findings. Finally, it conducts comprehensive analysis to identify both positive and negative risks i.e. opportunities and threats. This in-depth analysis and its findings enable us to understand the nature of the risks, and how those can be harnessed or mitigated to advance the field. Furthermore, it provides both academia and industry the foundation to plan improved risk mitigation strategies and to develop a structured adoption framework. This study is expected to make a significant contribution to the advancement of the field.
References
- [1] Y. T. Chae, R. Horesh, Y. Hwang, and Y. M. Lee, “Artificial neural network model for forecasting sub-hourly electricity usage in commercial buildings,” Energy Build., vol. 111, pp. 184–194, 2016, doi: https://doi.org/10.1016/j.enbuild.2015.11.045.
- [2] V. Patrício, R. Lopes da Costa, L. Pereira, and N. António, “Project management in the development of dynamic capabilities for an open innovation era,” J. Open Innov. Technol. Mark. Complex., vol. 7, no. 3, p. 164, 2021.
- [3] L. Pereira, R. Nobre, Á. Dias, R. L. D, A. Costa, and R. Gonçalves, “Artificial intelligence and project management: exploring the contributions and implications,” Int. J. Logist. Syst. Manag., vol. 47, no. 4, pp. 432–467, 2024, doi: 10.1504/ijlsm.2024.138916.
- [4] J. Heagney, Fundamentals of project management. Amacom, 2022.
- [5] E. Larson and C. Gray, Project management: The managerial process. McGraw Hill, 2014.
- [6] A. Lester, Project management, planning and control: managing engineering, construction and manufacturing projects to PMI, APM and BSI standards. Elsevier, 2006.
- [7] R. Parekh and O. Mitchell, “Utilization of artificial intelligence in project management,” Int. J. Sci. Res. Arch., vol. 13, no. 1, pp. 1093–1102, Sept. 2024, doi: 10.30574/ijsra.2024.13.1.1779.
- [8] P. Mikalef and M. Gupta, “Artificial intelligence capability: Conceptualization, measurement calibration, and empirical study on its impact on organizational creativity and firm performance,” Inf. Manage., vol. 58, no. 3, p. 103434, 2021, doi: https://doi.org/10.1016/j.im.2021.103434.
- [9] S. Chatterjee, R. Chaudhuri, and D. Vrontis, “AI and digitalization in relationship management: Impact of adopting AI-embedded CRM system,” J. Bus. Res., vol. 150, pp. 437–450, 2022, doi: https://doi.org/10.1016/j.jbusres.2022.06.033.
- [10] N. M. N. Nasr and A. A. Asharee, “Impact of artificial intelligence and automation on project management processes,” Afro-Asian J. Sci. Res. AAJSR, vol. 2, no. 4, pp. 52–62, 2024.
- [11] E. Haque, F. M. Fahad, Z. Hasan, and M. B. Islam, “Artificial Intelligence in project management: Enhancing decision-making, efficiency and risk management,” Strateg. Data Manag. Innov., vol. 2, no. 01, pp. 62–77, Jan. 2025, doi: 10.71292/sdmi.v2i01.11.
- [12] H. K. Dam, T. Tran, J. Grundy, A. Ghose, and Y. Kamei, “Towards effective AI-powered agile project management,” 2019 IEEEACM 41st Int. Conf. Softw. Eng. New Ideas Emerg. Results ICSE-NIER, pp. 41–44, 2019, doi: 10.48550/arXiv.1812.10578.
- [13] D. T. Wijayati, Z. Rahman, A. Fahrullah, M. F. W. Rahman, I. D. C. Arifah, and A. Kautsar, “A study of artificial intelligence on employee performance and work engagement: the moderating role of change leadership,” Int. J. Manpow., vol. 43, no. 2, pp. 486–512, May 2022, doi: https://doi.org/10.1108/ijm-07-2021-0423.
- [14] M. I. of T. S. of Management and S. Brown, Machine learning, explained. MIT Sloan management, 2021.
- [15] M. J. Karamthulla, A. Tadimarri, R. Tillu, and M. Muthusubramanian, “Navigating the future: AI-driven project management in the digital era,” Int. J. Multidiscip. Res., vol. 6, no. 2, pp. 1–11, Mar. 2024, doi: 10.36948/ijfmr.2024.v06i02.15295.
- [16] S. T. Boppiniti, “Real-time data analytics with AI: Leveraging stream processing for dynamic decision support,” Int. J. Manag. Educ. Sustain. Dev., vol. 4, no. 4, pp. 1–27, 2021.
- [17] S. Jiwane, “The impact of artificial intelligence on project management,” Masters Thesis KAMK Univ. Appl. Sci. Finl., 2025, Accessed: July 13, 2025. [Online]. Available: https://www.theseus.fi/handle/10024/882241
- [18] G. Auth, O. Jokisch, and C. Dürk, “Revisiting automated project management in the digital age – a survey of AI approaches,” Online J. Appl. Knowl. Manag., vol. 7, no. 1, pp. 27–39, May 2019, doi: 10.36965/ojakm.2019.7(1)27-39.
- [19] S. Chintalapati and S. K. Pandey, “Artificial intelligence in marketing: A systematic literature review,” Int. J. Mark. Res., vol. 64, no. 1, pp. 38–68, Jan. 2022, doi: https://doi.org/10.1177/14707853211018428.
- [20] S. Bag, J. H. C. Pretorius, S. Gupta, and Y. K. Dwivedi, “Role of institutional pressures and resources in the adoption of big data analytics powered artificial intelligence, sustainable manufacturing practices and circular economy capabilities,” Technol. Forecast. Soc. Change, vol. 163, p. 120420, 2021, doi: https://doi.org/10.1016/j.techfore.2020.120420.
- [21] A. Barcaui and A. Monat, “Who is better in project planning? Generative artificial intelligence or project managers?,” Proj. Leadersh. Soc., vol. 4, p. 100101, Dec. 2023, doi: 10.1016/j.plas.2023.100101.
- [22] K. Sainio, “Generative artificial intelligence assisting in agile project pain points,” Dr. Diss. Master’s Thesis Fac. Manag. Bus. Tamp. Univ. Finl., 2023.
- [23] L. Banh and G. Strobel, “Generative artificial intelligence,” Electron. Mark., vol. 33, no. 1, p. 63, Dec. 2023, doi: 10.1007/s12525-023-00680-1.
- [24] G. Auth, J. Jöhnk, and D. A. Wiecha, “A conceptual framework for applying artificial intelligence in project management,” in 2021 IEEE 23rd conference on business informatics (CBI), IEEE, 2021, pp. 161–170. doi: https://doi.org/10.1109/CBI52690.2021.00027.
- [25] V. Prifti, “Optimizing project management using artificial intelligence,” Eur. J. Form. Sci. Eng., vol. 5, no. 1, pp. 30–38, Apr. 2022, doi: 10.26417/667hri67.
- [26] F. Shoushtari, A. Daghighi, and E. Ghafourian, “Application of artificial intelligence in project management,” Int. J. Ind. Eng. Oper. Res., vol. 6, no. 2, pp. 49–63, 2024.
- [27] I. Taboada, A. Daneshpajouh, N. Toledo, and T. De Vass, “Artificial intelligence enabled project management: a systematic literature review,” Appl. Sci., vol. 13, no. 8, p. 5014, 2023, doi: https://doi.org/10.3390/app13085014.
- [28] S. Ahmed, S. F. Jannat, and S. H. Tanim, “Artificial intelligence in public project management: Boosting economic outcomes through technological innovation,” Int. J. Appl. Eng. Technol., vol. 6, no. 4, 2024.
- [29] A. G. Abyaneh, H. Ghanbari, E. Mohammadi, A. Amirsahami, and M. Khakbazan, “An analytical review of artificial intelligence applications in sustainable supply chains,” Supply Chain Anal., vol. 12, p. 100173, Dec. 2025, doi: 10.1016/j.sca.2025.100173.
- [30] O. Ayeni, “Advanced multi-phase project management frameworks: Optimizing AI-driven decision-making, risk control, and efficiency.,” Int. J. Res. Publ. Rev., vol. 6, no. 3, pp. 330–348, 2025.
- [31] Y. K. Dwivedi et al., “Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy,” Int. J. Inf. Manag., vol. 57, p. 101994, Apr. 2021, doi: 10.1016/j.ijinfomgt.2019.08.002.
- [32] D. K. D. Pal, S. Chitta, V. S. M. Bonam, P. Katari, and S. Thota, “AI-assisted project management: Enhancing decision-making and forecasting,” J Artif Intell Res, vol. 3, pp. 146–171, 2023.
- [33] M. Z. Nabeel, “AI-enhanced project management systems for optimizing resource allocation and risk mitigation: Leveraging big data analysis to predict project outcomes and improve decision-making processes in complex projects,” Asian J. Multidsciplinary Res. Rev., vol. 5, no. 5, pp. 53–91, 2024, doi: https://doi.org/10.55662/ajmrr.2024.5502.
- [34] C. Gupta, “Artificial intelligence (ai) influence in project management,” PM World J., vol. 9, no. 2, p. 6, 2020.
- [35] M. S. Bachari, A. Solouki, and H. Ghanbari, “Exploring the application of artificial intelligence in project management: A systematic literature review,” J. Proj. Manag., vol. 10, no. 3, pp. 451–468, 2025, doi: 10.5267/j.jpm.2025.5.002;%2010.3390/app13085014.
- [36] M. J. Page et al., “The PRISMA 2020 statement: an updated guideline for reporting systematic reviews,” BMJ, p. n71, Mar. 2021, doi: 10.1136/bmj.n71.
- [37] R. O. Ajirotutu, B. Matthew, P. Garba, and S. O. Johnson, “Advancing lean construction through Artificial Intelligence: Enhancing efficiency and sustainability in project management,” World J. Adv. Eng. Technol. Sci., vol. 13, no. 02, pp. 496–509, 2024, doi: https://doi.org/10.30574/wjaets.2024.13.2.0623.
- [38] X. Bo and O. Duraipandi, “Analysing the effect of artificial intelligence on project management and employee efficiency,” Prestieesci J. Bus. Manag., vol. 2, no. 1, pp. 514–523, 2025.
- [39] O. Chinedu and L. J. Serrano-Tamayo, “The impact of artificial intelligence on project management: Exploring the benefits and challenges of integrating AI tools and technologies in project management practices,” 2025.
- [40] T. V. Fridgeirsson, H. T. Ingason, H. I. Jonasson, and H. Gunnarsdottir, “A qualitative study on artificial intelligence and its impact on the project schedule, cost and risk management knowledge areas as presented in PMBOK®,” Appl. Sci., vol. 13, no. 19, p. 11081, 2023, doi: https://doi.org/10.3390/app131911081.
- [41] P. Goncharenko, “The potential of using artificial intelligence in communications within project management,” Vaasan Amm. Univ. Appl. Sci. Finl., 2024.
- [42] I. A. Hashimzai and M. Q. Mohammadi, “The integration of artificial intelligence in project management: A systematic literature review of emerging trends and challenges,” TIERS Inf. Technol. J., vol. 5, no. 2, pp. 153–164, 2024, doi: https://doi.org/10.38043/tiers.v5i2.5963.
- [43] M. R. Hossain, “Exploring the adoption of AI in project management: Challenges, opportunities, and future directions,” Sci. Post, vol. 1, no. 2, 2025, doi: https://doi.org/10.5281/zenodo.15201491.
- [44] H. Joshi, “Artificial intelligence in project management: A study of the role of ai-powered chatbots in project stakeholder engagement,” Indian J. Softw. Eng. Proj. Manag., vol. 4, no. 1, pp. 20–25, Jan. 2024, doi: 10.54105/ijsepm.b9022.04010124.
- [45] K. Łukasik-Stachowiak, “The use of Artificial Intelligence in project management,” Sci. Pap. Silesian Univ. Technol. Organ. Manag. Nauk. Politech. Slaskiej Ser. Organ. Zarzadzanie, no. 217, 2025, doi: http://dx.doi.org/10.29119/1641-3466.2025.217.17.
- [46] R. M. S. Nobre, “How artificial intelligence can provide support in project resource management,” Master’s Thesis, ISCTE-Instituto Universitario de Lisboa (Portugal), 2020.
- [47] D. Patel, “Revolutionizing project management with generative AI,” Int. Sci. J. Eng. Manag., vol. 02, no. 05, 2023, doi: 10.55041/ISJEM01068.
- [48] R. D. Savio and J. M. Ali, “Artificial intelligence in project management & its future,” Saudi J. Eng. Technol., vol. 8, no. 10, pp. 244–248, Oct. 2023, doi: 10.36348/sjet.2023.v08i10.002.
- [49] L. Seppänen, “Implementation of generative artificial intelligence in a project-based company,” Masters Thesis Ind. Eng. Manag. Univ. Oulu Finl., 2024.
- [50] M. M. I. Shamim, “Artificial Intelligence in project management: enhancing efficiency and decision-making,” Int. J. Manag. Inf. Syst. Data Sci., vol. 1, no. 1, pp. 1–6, 2024, doi: 10.62304/ijmisds.v1i1.107.
- [51] D. S. Somanathan, “Future-proofing project management with ai and blockchain: Trends, challenges, and opportunities,” Nanotechnol. Percept., vol. 20, no. S8, pp. 1687–1697, 2024.
- [52] S. Somanathan, “Artificial intelligence driven agile project management: Enhancing collaboration, productivity, and decision-making in virtual teams,” Nanotechnol. Percept., vol. 19, no. 2, pp. 111–119, Aug. 2023, doi: 10.5281/ZENODO.15270083.
- [53] E. K. Zadeh, A. B. Khoulenjani, and M. Safaei, “Integrating AI for agile project management: Innovations, challenges, and benefits,” Int. J. Ind. Eng. Constr. Manag. IJIECM, vol. 1, no. 1, pp. 1–10, 2024.
- [54] M. T. Zia, M. Nadim, M. A. Khan, N. Akram, and F. Atta, “The role and impact of artificial intelligence on project management,” Asian Bull. Big Data Manag., vol. 4, no. 02, pp. 178–185, May 2024, doi: 10.62019/abbdm.v4i02.160.
- [55] Z. Bahroun, M. Tanash, R. As’ad, and M. Alnajar, “Artificial Intelligence Applications in Project Scheduling: A Systematic Review, Bibliometric Analysis, and Prospects for Future Research,” Manag. Syst. Prod. Eng., vol. 31, no. 2, pp. 144–161, June 2023, doi: 10.2478/mspe-2023-0017.
- [56] R. L. D. Costa, Á. L. Dias, R. Gonçalves, L. Pereira, and S. Abreu, “Artificial Intelligence in project management: Systematic literature review,” Int. J. Technol. Intell. Plan., vol. 13, no. 2, pp. 143–163, 2022, doi: 10.1504/ijtip.2022.10050400.
- [57] M. R. Davahli, “The Last State of Artificial Intelligence in Project Management,” 2020.
- [58] J. C. Weng, “Putting intellectual robots to work: Implementing generative ai tools in project management,” NYU SPS Applied Analytics Laboratory, 2023. Accessed: July 13, 2025. [Online]. Available: http://archive.nyu.edu/handle/2451/69531
- [59] F. Afzal, S. Yunfei, M. Nazir, and S. M. Bhatti, “A review of artificial intelligence based risk assessment methods for capturing complexity-risk interdependencies: Cost overrun in construction projects,” Int. J. Manag. Proj. Bus., vol. 14, no. 2, pp. 300–328, Feb. 2021, doi: 10.1108/ijmpb-02-2019-0047.
- [60] M. Z. Hossain, L. Hasan, M. A. Dewan, and N. A. Monira, “The Impact of artificial intelligence on project management efficiency,” Int. J. Manag. Inf. Syst. Data Sci., vol. 1, no. 05, pp. 1–18, Oct. 2024, doi: 10.62304/ijmisds.v1i05.211.
- [61] N. Dacre and F. Kockum, “Artificial Intelligence in project management: a review of AI’s usefulness and future considerations for the project profession: a review of AI’s usefulness and future considerations for the project profession,” Assoc. Proj. Manag. Univ. Southamption UK, 2022, Accessed: July 14, 2025. [Online]. Available: https://eprints.soton.ac.uk/492506/
- [62] M. El Khatib and A. Al Falasi, “Effects of artificial intelligence on decision making in project management,” Am. J. Ind. Bus. Manag., vol. 11, no. 03, pp. 251–260, 2021, doi: 10.4236/ajibm.2021.113016.
- [63] A. M. Felicetti, A. Cimino, A. Mazzoleni, and S. Ammirato, “Artificial intelligence and project management: An empirical investigation on the appropriation of generative Chatbots by project managers,” J. Innov. Knowl., vol. 9, no. 3, p. 100545, July 2024, doi: 10.1016/j.jik.2024.100545.
- [64] A. Alshaikhi and M. Khayyat, “An investigation into the impact of artificial intelligence on the future of project management,” in 2021 International Conference of Women in Data Science at Taif University (WiDSTaif ), Taif, Saudi Arabia: IEEE, Mar. 2021, pp. 1–4. doi: 10.1109/widstaif52235.2021.9430234.
- [65] S. O. Abioye et al., “Artificial intelligence in the construction industry: A review of present status, opportunities and future challenges,” J. Build. Eng., vol. 44, p. 103299, 2021, doi: 10.1016/j.jobe.2021.103299.
- [66] T. Davenport and R. Kalakota, “The potential for artificial intelligence in healthcare,” Future Healthc. J., vol. 6, no. 2, pp. 94–98, 2019, doi: https://doi.org/10.7861/futurehosp.6-2-94.
- [67] R. G. Cooper and A. F. Sommer, “Agile–Stage-Gate for manufacturers: Changing the way new products are developed integrating agile project management methods into a Stage-Gate system offers both opportunities and challenges,” Res.-Technol. Manag., vol. 61, no. 2, pp. 17–26, Mar. 2018, doi: 10.1080/08956308.2018.1421380.
- [68] F. Shoushtari, M. Talebi, and S. Rezvanjou, “Electric vehicle charging station location by applying optimization approach,” Int. J. Ind. Eng. Oper. Res., vol. 6, no. 1, pp. 1–15, 2024.
- [69] S. Wallace, K. Y. Green, C. M. Johnson, J. T. Cooper, and C. M. Gilstrap, “An extended TOE framework for cybersecurity adoption decisions,” Commun. Assoc. Inf. Syst., vol. 47, pp. 338–363, 2020, doi: 10.17705/1CAIS.04716.
- [70] S. Bhbosale, V. Pujari, and Z. Multani, “Advantages and disadvantages of artificial intellegence,” Aayushi Int. Interdiscip. Res. J., vol. 77, no. 1, pp. 227–230, 2020.
https://doi.org/10.21791/IJEMS.2025.22