Materials Sciences

Experimental Investigation on the Properties of Borneo Soft Soil Stabilized with Industrial Waste

Published:
March 28, 2024
Authors
View
Keywords
License

Copyright (c) 2023 Irfan Prasetia, Hutagamissufardal Hutagamissufardal, Ahmad Jimmy, Muhammad Dhiya Khairi Ananda

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

How To Cite
Selected Style: APA
Prasetia, I., Hutagamissufardal, H., Jimmy, A. ., & Ananda, M. D. K. (2024). Experimental Investigation on the Properties of Borneo Soft Soil Stabilized with Industrial Waste. International Journal of Engineering and Management Sciences, 9(1), 25-37. https://doi.org/10.21791/IJEMS.2023.040
Abstract

This research aims to investigate the physical and mechanical properties of soft soil stabilized using industrial wastes, namely fly ash and rice husk ash. For this purpose, 6 (six) variations in the composition of fly ash (F), lime (L), and rice husk ash (R) were prepared. The variations in sample composition are SFLR1 (F: 15%, L: 2.5%, R: 5%), SFLR2 (F: 20%, L: 2.5%, R: 5%), SFLR3 (F: 25%, L: 2.5%, R: 5%), SFLR4 (F: 15%, L: 5%, R: 10%), SFLR5 (F: 20%, L: 5%, R: 10%) and SFLR6 (F: 25%, L: 5%, R: 10%). Meanwhile, soft soil was obtained from Banjarmasin City in South Borneo. The sample's physical properties were analyzed using the Atterberg limit test. Moreover, the California Bearing Ratio (CBR) and direct share tests are conducted to assess the sample's mechanical properties. The research results can provide confidence that fly ash, lime, and rice husk ash have the potential to improve the physical and mechanical properties of Borneo soft soil. The results of the Atterberg limit test show that industrial wastes can lower the liquid limit and increase the plastic limit; thus, the soil plasticity index decreases. As for the CBR test results, the untreated soft soil bearing ratio value of 1.4% can be increased to 2.6% after being treated with industrial wastes. In addition, using industrial wastes also decreases the swelling of the soil. Moreover, it can be seen that greater use of fly ash can improve the mechanical properties of the soft soil. However, increasing the composition of lime and rice husk ash can reduce the mechanical properties of the soft soil. Based on the experimental results, it is proposed to use SFLR3 as soil stabilization mixtures.

References
  1. G. Mucsi et al., "Utilization Possibilities of Industrial Wastes from Hungary as Construction Industrial Material," vol. 4, no. 4, pp. 203–212, 2019, doi: 10.21791/IJEMS.2019.4.23.the.
  2. I. Prasetia, D. P. Putera, and A. Y. Pratiwi, "Mechanical Performance of Mortar and Concrete Using Borneo Wood Sawdust as Replacement of Fine Aggregate," in IOP Conference Series: Earth and Environmental Science, 2022. doi: 10.1088/1755-1315/999/1/012001.
  3. I. Prasetia and R. A. Akhbar, “Pengaruh PERBEDAAN KUALITAS LIMBAH KERAMIK TERHADAP SIFAT MEKANIS BLOK PERKERASAN,” Jalan-Jembatan, vol. 40, no. 1, pp. 44–53, 2023, [Online]. Available: https://binamarga.pu.go.id/jurnal/index.php/jurnaljalanjembatan/article/view/1174
  4. F. E. Yulianto, N. E. Mochtar, and M. Ma'ruf Afif, "Physical and Engineering Properties of Peat Soil Stabilized With the Admixture of Caco3+Rice Husk Ash Due To Water Infiltration From Surrounding Areas," J. Appl. Eng. Sci., vol. 20, no. 1, pp. 276–284, 2022, doi: 10.5937/jaes0-32003.
  5. W. Guan et al., "Disease 2019 in China," 2020, doi: 10.1056/NEJMoa2002032.
  6. I. Prasetia, M. Syauqi, and A. S. Aini, "Application of Central Kalimantan Coal Ash as a Sustainable Construction Material," in IOP Conference Series: Earth and Environmental Science, 2021. doi: 10.1088/1755-1315/758/1/012011.
  7. I. Prasetia and A. Maulana, "Effects of crushed stone waste as fine aggregate on mortar and concrete properties," in IOP Conference Series: Materials Science and Engineering, 2019. doi: 10.1088/1757-899X/620/1/012040.
  8. J. F. Rivera, R. Mejía de Gutiérrez, S. Ramirez-Benavides, and A. Orobio, "Compressed and stabilized soil blocks with fly ash-based alkali-activated cements," Constr. Build. Mater., vol. 264, p. 120285, 2020, doi: 10.1016/j.conbuildmat.2020.120285.
  9. PT. PLN (PERSERO), “Rencana Usaha Penyediaan Tenaga Listrik (RUPTL) PT PLN (Persero) 2021-2030.,” 2021.
  10. F. Anggara, H. T. B. M. Petrus, D. A. A. Besari, H. Manurung, and F. Y. A. Saputra, “Tinjauan Pustaka Karakterisasi dan Potensi Pemanfaatan Fly Ash dan Bottom Ash (FABA),” Bul. Sumber Daya Geol., vol. 16, no. 1, pp. 53–70, 2021.
  11. PLTU Asam-Asam, “Laporan Klasifikasi Kelas, Rencana Program, dan Rencana Biaya Pengelolaan Fly Ash dan Bottom Ash,” Pelaihari, 2018.
  12. BPS, Provinsi Kalimantan Selatan Dalam Angka 2022, 1st ed. Kalimantan Selatan: BPS, 2022.
  13. D. R. Mujiyanti, S. Si, M. Si, D. Ariyani, and S. Si, Padi Lokal Kalimantan Selatan Nidn :0016058401 Nidn : 0011128203, no. April. 2020.
  14. H. Harsono, “Pembuatan silika amorf dari limbah sekam padi,” J. Ilmu Dasar, vol. 3, no. 2, pp. 98–103, 2002.
  15. I. Prasetia, Ma’ruf, and Riswan, “POTENSI PEMANFAATAN LIMBAH ABU BATUBARA SEBAGAI BAHAN KONSTRUKSI DI DAERAH RAWA,” J. Teknol. Berkelanjutan (Sustainable Technol. Journal), vol. 5, no. 2, pp. 71–78, 2016, [Online]. Available: http://jtb.ulm.ac.id
  16. I. Prasetia and M. F. Rizani, "Analysis of fly ash from PLTU Asam-Asam as a construction material in terms of its physical and mechanical properties," MATEC Web Conf., vol. 280, p. 04013, 2019, doi: 10.1051/matecconf/201928004013.
  17. L. P. Singh, D. Ali, I. Tyagi, U. Sharma, R. Singh, and P. Hou, "Durability studies of nano-engineered fly ash concrete," Constr. Build. Mater., vol. 194, pp. 205–215, 2019, doi: 10.1016/j.conbuildmat.2018.11.022.
  18. N. Dwi Wahyuni, A. D. Putra, and A. Syah, “Kinerja Fly Ash terhadap Stabilisasi Tanah Lunak sebagai Material Perbaikan Tanah Dasar (Subgrade),” vol. 9, no. 3, pp. 547–558, 2021.
  19. V. Jittin, A. Bahurudeen, and S. D. Ajinkya, "Utilisation of rice husk ash for cleaner production of different construction products," J. Clean. Prod., vol. 263, p. 121578, 2020, doi: 10.1016/j.jclepro.2020.121578.
  20. H. Moayedi, B. Aghel, M. M. Abdullahi, H. Nguyen, and A. Safuan A Rashid, "Applications of rice husk ash as green and sustainable biomass," J. Clean. Prod., vol. 237, p. 117851, 2019, doi: 10.1016/j.jclepro.2019.117851.
  21. T. K. Rajak, L. Yadu, and S. K. Pal, "Analysis of Slope Stability of Fly Ash Stabilized Soil Slope," in Geotechnical Applications, A. I.V. and V. B. Maji, Eds., Singapore: Springer Singapore, 2019, pp. 119–126.
  22. Yasruddin, U. S. Lestari, and A. Rifqy, “LIMBAH BATUBARA SEBAGAI BAHAN CAMPURAN PERBAIKAN LAPISAN TANAH DASAR DI KALIMANTAN SELATAN,” Al Ulum Sains dan Teknol., vol. 6, no. 1, pp. 19–25, 2020, [Online]. Available: https://ojs.uniska-bjm.ac.id/index.php/JST/article/view/3658/2366
  23. H. Jafer, W. Atherton, M. Sadique, F. Ruddock, and E. Loffill, "Stabilisation of soft soil using binary blending of high calcium fly ash and palm oil fuel ash," Appl. Clay Sci., vol. 152, no. April 2017, pp. 323–332, 2018, doi: 10.1016/j.clay.2017.11.030.
  24. M. Jain and A. Dwivedi, "Fly ash – waste management and overview : A Review Fly ash – waste management and overview : A Review," Recent Res. Sci. Technol. 2014, vol. 6(1), no. january, pp. 30–35, 2014.
  25. Z. Jauhari, A. Fauzi, and U. J. Fauzi, “Pemanfaatan Limbah Batubara (Fly Ash) Untuk Bahan Stabilisasi Tanah Dasar Konstruksi Jalan Yang Ramah Lingkungan,” J. Tekno Glob., vol. II, no. 1, pp. 57–63, 2013.
  26. P. G. Kumar and S. Harika, "Stabilization of expansive subgrade soil by using fly ash," Mater. Today Proc., vol. 45, no. xxxx, pp. 6558–6562, 2020, doi: 10.1016/j.matpr.2020.11.469.
  27. L. C. Ram and R. E. Masto, "Fly ash for soil amelioration: A review on the influence of ash blending with inorganic and organic amendments," Earth-Science Rev., vol. 128, pp. 52–74, Jan. 2014, doi: 10.1016/J.EARSCIREV.2013.10.003.
  28. J. S. Trivedi, S. Nair, and C. Iyyunni, "Optimum utilization of fly ash for stabilization of sub-grade soil using genetic algorithm," Procedia Eng., vol. 51, pp. 250–258, 2013, doi: 10.1016/j.proeng.2013.01.034.
  29. A. Y. Pratiwi, I. Prasetia, Y. A. Perina, and R. Effendi, "Stabilization of soft soil using industrial waste," IOP Conf. Ser. Earth Environ. Sci., vol. 758, no. 1, pp. 0–6, 2021, doi: 10.1088/1755-1315/758/1/012007.
  30. A. Y. Pratiwi, I. Prasetia, M. Yahya, and R. Effendi, "Investigation of enhancing industrial waste as a soft soil stabilizer," IOP Conf. Ser. Earth Environ. Sci., vol. 999, no. 1, pp. 0–6, 2022, doi: 10.1088/1755-1315/999/1/012029.
  31. Direktorat Jenderal Bina Marga, Manual Desain Perkerasan Jalan. Jakarta: Kementerian Pekerjaan Umum dan Perumahan Rakyat, Direktorat Jenderal Bina Marga, 2017.
  32. A. K. Anupam, P. Kumar, and R. N. G. D. Ransinchung, "Effect of Fly Ash and Rice Husk Ash on Permanent Deformation Behaviour of Subgrade Soil under Cyclic Triaxial Loading," Transp. Res. Procedia, vol. 17, no. December 2014, pp. 596–606, 2016, doi: 10.1016/j.trpro.2016.11.114.
  33. P. Indiramma, C. Sudharani, and S. Needhidasan, "Utilization of fly ash and lime to stabilize the expansive soil and to sustain pollution free environment - An experimental study," Mater. Today Proc., vol. 22, no. xxxx, pp. 694–700, 2020, doi: 10.1016/j.matpr.2019.09.147.
  34. M. A. Ma’ruf, U. Fitriati, and M. T. Indrawan P., “Pengaruh penambahan kapur dan fly ash terhadap sifat fisik dan teknis tanah gambut yang mengalami kekeringan,” pp. 23–28, 2016.
  35. S. Muthu Lakshmi, S. Geetha, M. Selvakumar, and K. Divya Susanna, "Strength enhancement of Clayey Sand subgrade using lime and rice husk ash," Mater. Today Proc., vol. 46, no. xxxx, pp. 7430–7435, 2021, doi: 10.1016/j.matpr.2021.01.039.
  36. A. Tangri, "Effect of lime and RHA on clayey soil - A review," Mater. Today Proc., vol. 37, no. Part 2, pp. 2239–2241, 2020, doi: 10.1016/j.matpr.2020.07.683.
  37. F. E. Yulianto and N. E. Mochtar, "The effect of curing period and thickness of the stabilized peat layer to the bearing capacity and compression behavior of fibrous peat," ARPN J. Eng. Appl. Sci., vol. 11, no. 19, pp. 11615–11618, 2016.
  38. E. E. Hangge, R. A. Bella, and M. C. Ullu, “Pemanfaatan Fly Ash Untuk Stabilisasi Tanah Dasar Lempung Ekspansif,” J. Tek. Sipil, vol. 10, no. 1, pp. 89–102, 2021.
  39. T. R. Karatai, J. W. Kaluli, C. Kabubo, and G. Thiong'o, "Soil Stabilization Using Rice Husk Ash and Natural Lime as an Alternative to Cutting and Filling in Road Construction," J. Constr. Eng. Manag., vol. 143, no. 5, pp. 4–8, 2017, doi: 10.1061/(asce)co.1943-7862.0001235.
  40. Mariamah, N. Chairunnisa, and R. Nurwidayati, “The Effect of Natrium Hydroxide Molarity Variation and Alkali Ratio on the Compressive Strength of Geopolymer Paste and Mortar,” IOP Conf. Ser. Earth Environ. Sci., vol. 1184, no. 1, p. 012025, 2023, doi: 10.1088/1755-1315/1184/1/012025.
  41. ASTM, ASTM D4318: Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils, vol. 04. 2000, pp. 1–14.
  42. ASTM, ASTM D854-02: Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer, vol. 24, no. 1. 2006, p. 120432. [Online]. Available: https://doi.org/10.1016/j.conbuildmat.2020.118708%0Ahttps://doi.org/10.1016/j.wasman.2018.02.018%0Ahttps://doi.org/10.1016/j.conbuildmat.2019.03.011%0Ahttp://dx.doi.org/10.1007/s40710-017-0210-6%0Ahttp://dx.doi.org/10.1016/j.phpro.2014.07.011%0Ahttps://do
  43. ASTM, ASTM D422-63: Standard Test Method for Particle Size Analysis of Soils, vol. D422-63, no. Reapproved. 2007, pp. 1–8. [Online]. Available: papers2://publication/uuid/32E2AE22-8555-4A27-B8B6-F7217202A1F2
  44. ASTM D1883, ASTM D1883: Standard Test Method for CBR (California Bearing Ratio) of Laboratory-Compacted Soils, vol. 04, no. May. 2005, pp. 21–24. [Online]. Available: http://www.astm.org/Standards/D4429.htm
  45. ASTM D3080, ASTM D3080: Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions. 2011, pp. 1–9. doi: 10.1520/D3080.
  46. H. C. Hardiyatmo, Mekanika Tanah I, no. 3. Yogyakarta: Gajah Mada University Press, 2002.
  47. F. Ferdian, M. Jafri, and Iswan, “Pengaruh Penambahan Pasir Terhadap Tingkat Kepadatan dan Daya Dukung Tanah Lempung Organik,” JRSDD, vol. 3, no. 1, pp. 145–156, 2015.
  48. R. Rusdiansyah, “Studi Karakteristik Tanah Lempung Lunak Akibat Adanya Penambahan Material Limbah,” Jukung (Jurnal Tek. Lingkungan), vol. 4, no. 1, pp. 39–49, 2018, doi: 10.20527/jukung.v4i1.4667.
  49. P. S. Wulandari and D. Tjandra, “Pengaruh Nilai Indeks Plastisitas Tanah Lempung Terhadap Perubahan Kuat Kokoh Tanah Lempung Akibat Variasi Kadar Air,” J. Konf. Nas. Tek. Sipil 12 Progr. Stud. Tek. Sipil, Univ. Kristen Petra, Jl.Siwalankerto 121-131 Surabaya, no. September, pp. 18–19, 2018, [Online]. Available: http://repository.petra.ac.id/18116/
  50. Y. Yudiawati, A. W. Rasul, and T. Karmila, “MATERIAL AGREGAT LOKAL PILIHAN UNTUK PEMBUATAN BETON MUTU TINGGI,” in Seminar Nasional Riset Terapan, Banjarmasin: Politeknik Negeri Banjarmasin, 2017, pp. 40–49.
  51. A. Zulnasari, S. A. Nugroho, and F. Fatnanta, “Perubahan Nilai Kuat Tekan Lempung Lunak Distabilisasi Dengan Kapur dan Limbah Pembakaran Batubara,” J. Rekayasa Sipil, vol. 17, no. 1, p. 24, 2021, doi: 10.25077/jrs.17.1.24-36.2021.
  52. ASTM 698-07, ASTM 698-07: Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lbf/ft3 (600 kN-m/m3)), vol. 3. 2007, p. 15. [Online]. Available: https://www.resolutionmineeis.us/sites/default/files/references/astm-D698.pdf
  53. F. Soehardi, “Pengaruh Waktu Pemeraman Stabilisasi Tanah Lempung,” J. Tek. Sipil Siklus, vol. 3, no. 1, pp. 1–9, 2017.
  54. M. Simatupang et al., "The Mechanical Properties of Fly-Ash-Stabilized Sands," Geosciences, vol. 10, no. 4, 2020, doi: https://doi.org/10.3390/geosciences10040132.
  55. S. Horpibulsuk, C. Phetchuay, A. Chinkulkijniwat, and A. Cholaphatsorn, "Strength development in silty clay stabilized with calcium carbide residue and fly ash," Soils Found., vol. 53, no. 4, pp. 477–486, 2013, doi: 10.1016/j.sandf.2013.06.001.
  56. American Coal Ash Association, "Fly Ash Facts for Highway Engineers," Aurora, 2003.
Database Logos