Search
Search Results
-
The effects of fertilization on a 6 years old established grassland
19-30Views:67The effect of different N, P and K supply levels and their combinations were examined in the 33rd year of a long-term fertilization experiment on the yield and mineral element content of a 6 years old established all-grass sward in 2006, with seed mixture of eight grass species. The trial was established on a calcareous chernozem soil. The soil of the growing site contained around 3% humus, 5% CaCO3, 20-22% clay in the ploughed layer and was originally moderately well supplied with available K, Mg, Mn and Cu and poorly supplied with P and Zn. The trial included 4N×4P×4K=64 treatments in 2 replications, giving a total of 128 plots. The fertilizers applied were Ca-ammonium nitrate, super phosphate and potassium chloride. The groundwater table was at a depth of 13-15 m and the area was prone to drought. The 1st cut was made on 08th June, the 2nd one on 11th September. During the vegetation period of 8.5 months in 2006, the site had a total of 397 mm precipitation. The lay-out, method and main results of the trial were published earlier (Kádár, 2004, 2008; Kádár és Győri, 2004, 2005). Main conclusions of this study are as follows:
- The 1st cut hay yield gave the ¾ of the total yield. Highest yields were reached with the 200 kg/ha/year N-fertilization on soil well supplied with P (Ammonium-lactate soluble P2O5: 214 mg/kg). The yield of NP control plots increased from 1.5 t/ha to about 7.5 t/ha as a function of the N×P positive interaction. The rising P supply alone was not able to enhance the yield, however the N fertilization gave 3.5 t/ha hay surplus even in the P-control treatments. N and P fertilization together resulted in 6.0-6.5 t/ha yield surpluses. The effect of K fertilization also reached 1 t/ha on the NP levels where the ammonium-lactate soluble K2O content fell below 150 mg/kg.
- The 2nd cut hay gave 0.5 t/ha on the NP-control plots unfertilized for 33 years, and 2.5 t/ha on the 300 kg/ha/year N treatment with well P-supply. The two cuts together resulted in yield levels between 2-10 t/ha according to the extreme NPK supply. In this year, with relatively good amount of precipitation, the hay yield surpluses for 1 kg N were 47-33-23 kg for the 100-200-300 kg/ha treatments.
- The C/N ratio of the 1st cut was narrowed (from 52 to 24) with N-supply and the concentration of N as well as most of the cations increased with the rising N fertilization. In the low yield of the 2nd cut the elements, metals were accumulated. The P, S and Sr were enriched in hay as a result of rising P supply, as superphosphate contains these elements. Antagonistic effect of P predominated in the uptake of other elements, metals (Na, Zn, Cu, Mo, Cr, Co). K content of the hay was lifting while other elements were dropping with the increasing K fertilization partly as a result of dilution effect (N, P, S) and mainly because of cation antagonism (Ca, Mg, Na, Sr). K-B antagonism also appeared.
- The N×K interactions resulted in 2-fold Sr and 18-22 fold Na content changes while N×P caused 18-22 fold changes in Mo contents, especially at the 2nd cut. As it can be seen, fertilization can have drastical effects on soil and crops. The induced element deficiencies or oversupplies can lead to diseases, disturbances in the metabolism of animals, so the soil and fodder analyses are necessary.
- Considering the leaf diagnostical data, the satisfactory level will be at 200 kg/ha/year N supply and 150 mg/kg ammonium-lactate soluble P2O5 and K2O level or above. The S, Ca, Mg, Fe, Mn supply were satisfactory even at the control plots, while the Zn, Cu and B levels showed deficiency. The P/Zn and K/B ratios became adversely wider in some treatments, as well as the narrowing of the Cu/Mo ratio denotes Cu deficiency and Mo oversupply.
- The amount of elements uptaken by hay as a sum of the two cuts and as a function of the supply/yield varied between the following values in kg/ha: 17-163 N; 36-122 K; 9-48 Ca; 6-17 P; 4-15 S; 3-14 Mg; 0,3-8,0 Na; 0,2-1,4 Fe; 0,2-0,9 Al and Mn. The other elements showed the following uptake: Zn 33-194, Sr 28-141, Ba 5-46, Cu 5-39, B 5-26, Mo 3-6 g/ha.
- The botanical composition was drastically modified by the aging of the grass and the nutrient supply. Only three species remained out of the eight sown species and one immigrated. Coverage of the tall fescue was between 21-70% according to the N×P supply and 44% as average; coverage of cocksfoot varied between 4-24% depending on the treatment and 18% as an average; coverage of crested wheatgrass was between 0-28% and 9% as an average; the immigrant smooth brome covered 0-24% and 9% as an average; Weed cover was 3-4% as an average at the 1st cut. Weeds thrived mainly on those areas where the grass thinned away (extreme NP-deficiency or oversupply). The total plant coverage on NP-deficient soil was about 50%, while on treatments well supplied with NP it amounted 95-97%.
-
Study of the agronomic value of artificial extensive grasslands
28-35Views:61The agricultural value of an extensive, alternativly used grassland with three seed densities (500 seed m-2, 1000 seed m-2 and 1500 seed m-2) and at two sowing times was examined in an established grassland experiment with herbs on sandy brown forest soil in Gödöllő in the spring and autumn of 2002.
The results showed that treatment No. 3 (=1500 seed m-2) had the highest agricultural value. It can be concluded that the highest seed norm resulted in the highest grass cover. Through the estimated agricultural value, we have also proved that the grass established in autumn grows more vigorously than the dicotyledonous species. This follows from the biological characteristics of the two plant groups. The grasses are tolerant towards cold and perennial species, while most of the dicotyledonous are annual and prefer milder conditions.
Grassland areas with the same ecological basis differ greatly as far as their plant composition is concerned, depending on seed density. In addition, the plant composition changes continusly according to sowing time. -
Fajösszetétel és diverzitás változás kiskunsági száraz és nedves fekvésű legelőkön
15-30Views:193Investigations were carried out in wet – next to Tatárszentgyörgy, and dry grass pasture – next to Bugac, both located in Kiskunság, in the central region of Carpathian Basin. Recordings were taken every June of 2007, 2008, 2009 and 2010 from Tatárszentgyörgy – where cattle were grazed, and 1997, 2005 and 2010 from Bugac, where cattle and sheep were grazed. Coenological recordings were taken in three zones. The first zone ("A" zone) located 0-50 m near the stable, second zone ("B" zone) located 50-150 m from the stable, while the third zone ("C" zone) located farther then 150m from the stable. Analyses of ecological and environmental factors were based on Borhidi’s relative ecological indicators. Life form analyses were performed by Pignatti life form types. For statistical evaluation, R software was applied. Shannon diversity. Based on our results for both dry and wet grasslands, quadrates of "A" zone were well isolated from the rest of the zones. Overgrazing, which involves considerable trampling, vanishes differences among vegetations, thereby promotes weed and disturbance tolerant rich vegetation. The lowest species number and diversity could be found here. Recordings for "B" and "C" zones separated from recordings of "A" zone, furthermore, quadrates of wet and dry grasslands formed separate groups. From recordings of "B" and "C", zone perennial grass species (H caesp) and the emerging perennial (H wrap) species multiplied and these species were the indicators of grazing. The greatest lifeform richment were presented among "B" zone recordings. The amount of intensive grazing indicator species, such as creeping perennials (Hrep) was significant in "B" zone recordings of Tatárszentgyörgy. Grazing stabilised the local vegetation, but increased the ratio of disturbance tolerant species, which was confirmed by conservation evaluation. This is due to the conversion of grassland types, the transition from free grazing to switch grazing, which resulted in an intensive involvement of the more distant "C" zone as well. "A" zones fully converted; they changed into fully reliefs. Further located sample area vegetations were not homogenised by grazing and even helped the preservation of characteristic species. In the aspect of environmental protection, vigorous grazing led to a more valuable vegetation in "B" zone in an arid grassland (Bugac). According to the sample area, wet grasslands from the sandy areas of Kiskunság, preserve nature protection values and grass composition better moving away from stables, due to less grazing pressure. Drier backgrounds tolerate stronger grazing pressure (Bugac), while in case of wetter areas (Tatárszentgyörgy) – considering sustainability – grazing should be carried out with caution.