Search
Search Results
-
Effect of Soil Covering on the Soil Enzyme Activity of Integrated Orchard
20-29Views:95The purpose of our experiments is to discover the effect of different soil cover matters (agrofoil and black polyethylene) on the activity of some enzymes (phosphatase, saccharase, urease, catalase, dehydrogenase) occuring in soil. Soil samples were taken from a cider apple plantation of the Fruit Producing Research and Advisory Kht Újfehértó. The enzyme activity was measured according to Krámer and Erdei (1959a), Kuprevič and Tsherbakova (1956), Kuprevič et al. (1966), Frankenberger and Johanson (1983), Mersi and Schinner (1991). Soil moisture content was by conventional (drying chamber) method measured during every sampling and enzyme activity was transpolated to absolute dry soil. Results were estimated by mathematical methods (variation analysis, correlation counting). Soil samples were taken by trials 5 times (in every two months) a year in the vegetation period from March to November.
By recording the monthly changes of the enzyme activity we have observed the following. The activity of the phosphatase was generally the highest in May and the lowest in November. Depending on the trials, high values were also measured in March and September. The activity of the saccharase was generally the highest in November and the lowest in June, but at the same time peaks even occured in May and September. The highest urease avtivity was measured in September and November, and the lowest activity in May and July, also depending on the trials. In the year 2000, after a deep point in March, the activity of the catalase was the highest in November or by certain trials in September. In 2001, the lowest activity was also measured in March, but the highest activity appeared in November in case of one-minute trial, and in May in consequence of two-minute trial. Finally the activity of dehydrogenase was the highest in November and the lowest in July apart from the model years.
There were essential differences in rainfall of the two experimental years which was reflected in the enzyme activities. There was a poor positive significant relationship between soil moisture content and enzyme activity values in case of phosphatase, saccharase, urease (r=0,426; 0,480; 0,396) respectively. In case of catalase1 (r=0,518), catalase (r=0,556), dehydrogenase (r=0,559) we obtained a medium strong positive relationship between soil moisture content and enzyme activity values. By evaluating the effect of different trials in case of every examined enzyme significantly higher values were detected in soils covered by agrofoil (a porous black polyethylene) than in soils covered by black polyethylene or in uncovered soils. Moreover, the soil covered by black polyethylene showed significantly higher enzyme activities (besides phosphatase) than the control soil. Thus soil-covering meant statistically significant advantages in enzyme activity as opposed to uncovered soil proved. -
The impact of different fertilization methods on some microbiological soil characteristics
119-126Views:114In our experiment, we studied the impact of an organic fertilizer, Bactofil® A10 (half- and full dosage applied in field practice) and an artificial fertilizer of Ca(NO3)2 content in different dosages (20-40 mg kg-1) – in addition to control treatments – on two different soils (calcareous chernozem, humus sandy soil) in 2005-2006, the experiment was complemented with treatments applying 250% dosage (100 mg kg-1 N, Bactofil® A10 2.5 times the field dosage) and a compost from urban sewage (25 g kg-1 compost) was also tested on these two soil types. In the
experiment, several soil microbial parameters were studied. The experiment was set up at the Department of Agrochemistry and Soil Science using 1-kg pots.
Our laboratory experiments were performed at the soil microbiology laboratory of UD CAS Department of Agrochemistry and Soil Science, the total number of bacteria, microscopic fungi, nitrifying and aerob cellulose-decomposing bacteria were determined together with the CO2-production of soil, N content of the biomass and urease enzyme activity.
Statistical analysis of the data was done using the program SPSS 13.0, means of the measurements, deviation and significance values were calculated.
In 2005-2006, the effect of the different dosages of Bactofil® A10, and the Ca(NO3)2 fertilizer on the examined microbial parameters of calcareous chernozem and humus sandy soils can be summarized as follows:
• Concerning the total number of bacteria, both treatments were effective on calcareous chernozem soil, the higher (significant) increment in bacteria number was observed in the artificial fertilizer treatments, while in the humus sandy soil Bactofil treatments had a beneficial effect. The number of microscopic fungi also increased in both treatments, higher numbers were observed in the average of two years in the Bactofil treatments.
• The number of nitrifying bacteria was 2.5 times higher in both high-dosage treatments on calcareous chernozem soil, while on humus sandy soil a slight (not significant) increment was observed only int he high-dosage Bactofil treatment. The amount of aerob cellulose-decomposing bacteria significantly increased on calcareous chernozem soil in both the highdosage artificial fertilizer and the small-dosage Bactofil treatment, however, on humus sandy soil no significant increase was observed in either treatment.
• The CO2-production increased in both soil types, although it was not significant in either treatment. A higher (though not significant) soil respiration was observed in the Bactofil treatments in both soil types.
• The microbial biomass N values were significantly higher in the high-dosage Bactofil treatments, however, the high-dosage artificial fertilizer treatment also increased these values significantly on calcareous chernozem soil.
• On calcareous chernozem soil, urease activity was significantly increased and reduced by high-dosage artificial fertilizer treatments and Bactofil treatments, respectively. On humus sandy soil, urease activity was also reduced except for the high-dosage artificial fertilizer treatment. In 2007, the pot experiment with 250% dosages was complemented with the application of compost rich in organic matter, the results of these treatments are sumnmarized as follows:
• In the case of the total number of bacteria, all three treatments resulted in a significant increase on calcareous chernozem soil with the highest values in the Bactofil treatment. The Bactofil treatment was the most effective on the humus sandy soil, but the artificial fertilizer treatment also
resulted in a significant increment. In the case of the total number of fungi, Bactofil treatments resulted in the highest values on both soils, but the compost treatment also increased the number of fungi in calcareous chernozem significantly.
• The number of nitrifying bacteria was increased most (significantly) by the Bactofil and compost treatments on both soil types. The amount of cellulose-decomposing bacteria was significantly increased by he compost treatment on calcareous chernozem soil, while its effect was not significant on humus sandy soil. The number of these bacteria was increased significantly by the Bactofil treatment on humus sandy soil.
• On calcareous chernozem soil, all three treatments significantly increased CO2-production, while the compost treatments had the resulted in the largest increment in soil respiration on both soil types.
• The soil biomass N content was significantly increased in both soils by the compost treatment, while in the case of the humus sandy soil, the Bactofil treatment also resulted in a significant increment.
• Urease enzyme activity was significantly increased by the artificial fertilizer treatment on both soils. In calcareous chernozem soil, the Bactofil treatment resulted in a slight (not significant) reduction in enzyme activity. In humus sandy soil, the Bactoful treatment also resulted in a slight reduction, while the compost treatment increased (though not significantly) the urease activity.
Based on our results, it can be stated that all three treatments were effective with respect to the studied soil microbial parameters. For both the calcareous chernozem and the humus sandy soil, the organic fertilizer Bactofil and the compost with high organic matter content had a stronger effect on some soil microbial parameters than the artificial fertilizer. -
Effect of agrotechnical factors on the activity of urease enzyme in a long term fertlization experiment
43-48Views:150The soil is a natural resource, the fertility preservation is an important part of the sustainable development. We have to monitor the transformation dinamics of the organic nitrogen-containing substances, to get accurate information about the changes of the nitrogen cycle in the soil.
Physical and chemical properties of the soil and the microorganism effect on the organic matter in the soil – in addition to the composition of organic matter. Wide variety of extracellular enzymes are present in this decomposition. These enzymes help in the transformation of the macromolecules to transforming low molecular weight compounds so they will be available during the assimilation.
The urease enzyme, catalyzes the hydrolysis of urea to CO2 and NH3. The urease is widely spread in the nature, it is present in the microorganisms, plants and animals.
We found that the soil moisture content, the rotation and the fertilization affect to the amount of urease in spring. Furthermore, we get significant difference between the irrigated and non irrigated samples in the second period of the year. Based on our results we can state that the activity of urease was higher in spring 2014.
The objective of our study was to present how the different agronomic factors affect on the activity of urease in a long term fertilizationexperiment.
-
Effects of cultivation methods on some soil biological parameters of a meadow chernozem soil (Vertisols)
61-66Views:85The effect of extended drought conditions on soil, the unfavourable cultivation technologies and the application of chemicals have been enhancing the processes of physical and biological soil degradation, so the fertility of soil is gradually declining.
The effects of two cultivation methods – traditional ploughing (TP) and conservation tillage (CT) – on the biological activity of a meadow
chernozem soil were examined in a long term experiment. Different parameters of the biological activity of soil were determined. These are
the numbers of total bacteria, microscopic fungi, aerobic cellulose decomposing bacteria, as well as the activities of some important soil
enzymes and CO2 production.
Conservation tillage seemed to be a more favourable cultivation method for the majority of microorganisms, the activities of urease and
dehydrogenase enzymes and CO2 production, compared to the traditional ploughing system. These parameters increased significantly,
especially in the upper layer of conservation tillage plots. Concerning the plant cultures, the majority of microbiological parameters were
higher in the soil of vetch (Vicia sativa L.) depending on the cultivation methods, so involving the pulses to the crop-rotation seems to be
very important in this soil type.
According to the ninth year’s results, the importance of conservation tillage as a means of protecting the soil biological activity in meadow
chernozem (Vertisols) can be established; it was proven by microbiological investigations. -
Comparative examination of a mineral fertiliser and a bacterial fertilizer on humic sandy soil
111-116Views:100In our pot experiment, the impact of a bacterial fertilizer, Bactofil® A10 and a mineral fertilizer Ca(NO3)2 applied in different rates was studied on some soil chemical and microbiological characteristics of a humic sandy soil (Pallag). Perennial rye-grass (Lolium perenne L.) was used as a test-plant. Samples were collected four and eight weeks after sowing in each year. The experiment was set up in 2007-2009 in the greenhouse of
the UD CASE Department of Agrochemistry and Soil Science. The available (AL-extractable) nutrient contents of soil, among the microbial parameters the total number of bacteria, the number of microscopic fungi, cellulose-decomposing and nitrifying bacteria, the sacharase and urease enzyme activity, as well as the soil respiration rate were measured.
Statistical analyses were made by means of the measurements deviation, LSD values at the P=0.05 level and correlation coefficients were calculated. Results of our experiment were summarised as follows:
− The readily available nutrient content of humic sandy soil increased as affected by the treatments, in case of the available (AL-extractable) phosphorus and potassium content the higher value was measured in high-dosage artificial fertilizer treatment.
− The treatments had also positive effect on several soil microbial parameters studied. The higher-dosage mineral fertilizer treatments had a beneficial effect on the total number of bacteria, cellulose-decomposing and nitrifying bacteria. No significant differences were obtained between the effect of treatment in case of the total-number of bacteria, the number of microscopic fungi and nitrifying bacteria.
− On the sacharase enzyme activity the artificial fertiliser treatments proved to be unambiguously stimulating, the urease activity significantly increased on the effect of the lower-dosage Ca(NO3)2 artificial fertilizer treatment.
− The soil respiration increased in all treatments in related to the amounts applied, significantly increased in the highest rate of Ca(NO3)2 fertilizer addition.
− Some medium and tight positive correlations were observed between the soil chemical and microbiological parameters studied in case of both nutrient sources.
Summarizing our results, it was established that the organic and all the mineral fertilizer treatments had beneficial effects on the major soil characteristics from the aspect of nutrient supply. In majority of the examined soil parameters (AL-extractable phosphorus- and potassium, total number of bacteria, number of cellulose-decomposing and nitrifying bacteria, activity of sacharase enzyme) the high rate of Ca(NO3)2 mineral fertilizer treatment proved to be more stimulating, but at the same time the high rate bacterium fertilizer resulted in significant increases in
the nitrate-N content, the AL-potassium content of soil, the total number of bacteria, the number of cellulose-decomposing and nitrifying bacteria and the urease enyme activity.
Our examinations showed that the mineral fertilizer treatments proved to be more stimulating on most of the soil parameters studied but according to our results, it was established that Bactofil is efficiently applicable in the maintenance of soil fertility and the combined application of
mineral fertilizer and bacterium fertilizer may be a favourable opportunity – also in aspect of the environmental protection – in maintaining soil fertility. -
The effect of different microbial preparations on some soil characteristics
83-86Views:113In pot experiment the effect of different microbial inoculants and their combinations with NPK fertilizer and wheat straw on some soil properties (physical, chemical, and microbiological parameters) were studied. The experiment was set up in 2011 at the Institute of Agricultural Chemistry and Soil Science, in a three replications, in a random block design. The studied soil type was calcareous chernozem soil from Debrecen (Látókép) with ryegrass (Lolium perenne, L.) test plant.
At the end of the experiment in our laboratory the nitrate-nitrogen content of soil, the AL-soluble phosphorus and potassium content of soil, the urease enzyme activity of soil, the total number of bacteria and the number of microscopical fungi were determined.
The results of the study were the following:
– The straw treatment and the straw + biofertilizer combinations influenced positively the nitrate content of soil.
– The NPK fertilization and the straw+bacterial fertilizer combinations had significant positive effect on the AL-soluble phosphorus content of the soil.
– The biofertilization and the straw+biofertilizer combinations stimulated the AL-soluble potassium content of soil occasionally.
– The total number of bacteria was influenced by the NPK fertilization, the bacterial fertilization and the straw+bacterial fertilizer combinations significantly.
– In case of the number of microscopic fungi caused in some cases significant changes the NPK+bacterial fertilizer and straw+bacterial fertilizer combinations.
– The soil urease enzyme activity was increased in all cases strongly especially by the straw+bacterial preparation combinations. -
Activity of some enzymes, participating in nitrogen compounds transformation in chernozem, polluted by fluorine compounds
99-104Views:117Contamination of chernozem by fluorine compounds variously affects those enzymes (urease, asparaginase, glutaminase, arginase, amidase), which takes part in the metabolism of nitrogen-bearing organic compounds. In broken soils the inhibited desaminisations is stronger, than enzymatic hydrolysis of asparagine and arginine. The features of seasonal dynamics of change activity of urease and correlation dependence of its activity from some physical and chemical soils properties are described. These tendencies well comport with the results of model experiments. At minimum HF influence there is inhibition of processes of monohydrocarboxylic acids desaminisation, hydrolytic breaking up of arginine and glutamine. By a side with this there is activating of urea and asparagine breaking up processes on the initial stages of toxicant influence. The study of kinetics of process of urea enzymatic hydrolysis in chernozem at the different level of HF influence showed changes of initial and maximal velocity of enzymatic reaction, and also Michaelis-Menten constant.
-
Effects of some herbicides on the microbiological characteristics of soil nitrogen cycle under maize plantation
93-100Views:89Nitrogen is a key element for the living organisms and influence not only for the quantity but for the quality of the yield, considerable. Availability of nitrogen from the soil is influenced by several microbiological processes of the Nitrogen-cycle. Among the intensive agricultural production the herbicide application cannot be omitted more information needs therefore about the inhibitor effect of herbicides on the different microorganisms.
An experiment was set up on calcareous chernozem soil under maize culture. Effect of four different herbicides (Acenit, Frontier, Merlin, and Wing) was investigated. The effect of herbicides was measured to four microbiological parameters of the Nitrogencycle (abundance of nitrifying bacteria, nitrate solubilisation, biomass nitrogen and urease enzyme activity). There were singledouble- and five times of recommended doses of herbicides applied for two onsecutive vegetation periods.
From the results of the different doses of herbicides, the following can be stated:
– The Acenit has a stimulating effect on nitrifying bacteria in general. The Frontier and Merlin also influenced the quantity of nitrifyers, however in certain cases decreased in another cases increased the number of bacteria.
– The double doses and five times doses of herbicides was found to be increasing the nitrate content of soil, -especially in 2006.
– The quantity of microbial biomass nitrogen increased in the 60% of treatments and decreased in the 40% of the treatments.
– Except of the result of Wing in 2006 and Merlin in 2005, the effect of simple dose herbicides was the smallest on the urease enzyme activity. According to the results the effect of Merlin was positive; the effect of Wing was negative on the soil enzyme’s activity.
Regarding the application of four different herbicides in three different doses on the microbiological parameters of soil (at two consecutive years-) in 39% of the treatments has resulted a significant inhibitory effect, 28% of the treatments, however have significant stimulating effect on the parameters measured. More than 50% of the inhibitory effect was measured in case of the Wing, at more than 50% of the Frontier the microbiological parameters have not changed.