Search

Published After
Published Before

Search Results

  • The effect of the dates of shoot selection and shoot tip removal on the growth of William’s pear trees
    65-70
    Views:
    217

    Increasing the intensity of production in the case of pear can be the solution to satisfy the market demand forr high-quality fruit. The aims in this technology are the canopy treatments and the maintainance of consistently high quality yields in the long run. The experiments were performed with cv. William’s pear, a cultivar grown on large areas in Hungary. To create the optimal canopy shape for earlier fruiting, we performed shoot selection and the cutting back of shoot tips. Our results show, that both pruning methods – applied at 3 different dates – decreased the number of short fruiting parts (spurs), and increased the number of vegetative shoots. The sole exception was from this the effect of shoot tip removal when done at the earliest date.

  • Investigation of Potato (Solanum tuberosum L.) Salt Tolerance and Callus Induction in vitro
    51-55
    Views:
    232

    Potato production plays an important role in Hungary and the other countries of Europe. Consumption of potato products has increased to a large extent during the past several years. We can satisfy market demands with high quality and virus-free varieties.
    Results of potato production depend on tolerance/resistance to abiotic stresses. In many cases, increased concentration of NaCl causes yield loss. Selection of salt tolerant varieties proved to be a difficult problem. Nowadays, the salt tolerance of potato varieties can be determined by cell/tissue/ protoplast techniques. Somaclonal variation provides a great potential for selection of lines resistant to salt stress. In vitro shoots and callus, derived plantlets selected for salt tolerance/resistance provide material for micropropagation.
    In vitro shoot development of potato (Solanum tuberosum L. cv. Kuroda) was investigated under salt stress (40 mM, 80 mM, 120 mM NaCl) conditions. Shoot heights of plantlets cultured under salt conditions were lower than the control through the investigation. However, the shoot development of plantlets originated from in vitro meristems was almost at the same level as the control under 40 mM NaCl concentration.
    There was no significant difference in the in vitro biomass production between control and treatment with 40 mM NaCl concentration. We measured a significant decrease in dry-matter mass under 120 mM NaCl concentration. There is a need for more investigation of different genotypes and for a conclusion as to whether in vitro tolerance could occur under in vivo circumstances in plants originated from somaclones as well.
    Under in vitro conditions, we investigated shoot and leaf callus initiation using different culture media with different 2,4-D concentrations. Under dark conditions, callus induction of shoot/leaf decreased as the 2,4-D concentrations increased.
    In light conditions, there was a little callus induction, while callus initiation from the shoot from 5 μM to 12 μM 2,4-D concentration showed a significant increase

  • Assessing the impact of salinity stress on some morpho-physiological traits of two chickpea genotypes under hydroponic conditions
    47-53
    Views:
    226

    Evaluating the performance of crop species to salinity stress is considered an intricate task due to differences in performance, response and susceptibility at different phenological stages of chickpea crop. Assessment of the performance of chickpea genotypes in response to NaCl-induced salinity stress at the initial vegetative phase is of great importance to have a crystal idea about the threshold level of tolerance. An experiment was carried out under hydroponic conditions to evaluate the performance of two chickpea genotypes (ELMO and ORION), in response to different salinity levels (0, 25, 50 and 75 mM NaCl) as factorial arrangement under completely randomized design with three replications. The average of shoot and root dry matter weight was significantly higher for the ELMO genotype at the control treatment (1.143, 0.4133 g respectively), while it was significantly lower in the two genotypes ORION and ELMO at the highest salinity level (0.267 and 0.2700; 0.0433 and 0.0533 g respectively). The root to shoot ratio was significantly higher in both genotypes in the control and the lowest salt level (25 mM NaCl), without significant differences among them (47.98, 43.30, 37.10 and 36.25% respectively). The relative water content and stomatal conductance were significantly higher in the ORION genotype (88.01%; 335.40 mmol m-2 s-1) compared to ELMO (84.09%; 299.10 mmol m-2 s-1), and increasing salinity level caused a proportional decline in both traits, where they were significantly lower at the highest salt level (75Mm) (77.45%; 87.50 mmol m-2 s-1). Results indicate genotypic variability in response to NaCl-induced salinity stress under hydroponic conditions and the physiological traits are more expressive and reliable as selection criteria than morphological ones.

  • Seed treatment with Bacillus bacteria improves maize production: a narrative review
    105-111
    Views:
    746

    Maize (Zea mays L.) is an important crop in relation to its production and consumption. Production of maize is constrained by soil infertility and poor quality seed. Microbial technologies like seed treatment with Bacillus bacteria improves the productivity of maize on infertile soil. However, due to variations in maize growth environments and Bacillus species, this review was conducted to identify the common species of Bacillus species used for seed treatment, and provide an overview of the effect of seed treatment with Bacillus on maize growth and yield. Results show that Bacillus subtilis, Bacillus pumilus and Bacillus amyloliquefaciens were the dominant species used for seed treatment. Bacillus was used as both a biofertiliser and biopesticide. The conspicuous positive effects of Bacillus were in plant height, shoot and root length, and shoot dry matter depending on the species. In terms of grain yield, Bacillus subtilis (8502 kg ha-1), Bacillus amyloliquefaciens (6822 kg ha-1) and Bacillus safensis (5562 kg ha-1) were the bacterial species that had an overall pronounced effect. The highest increase in grain yield was in the interactive effect of Bacillus megaterium + Bacillus licheniformis (18.1%) and sole Bacillus subtilis (15.6%), while Bacillus pumilus reduced grain yield by 4.8%. This shows that the improvement of maize productivity using Bacillus bacteria requires careful selection of the species for seed treatment.

  • The Number and Species of Migrating Wild Geese in Hortobágy
    22-25
    Views:
    305

    This paper presents the total number and annual distribution of wild geese population on Puszta Hortobágy. Two migrating goose species, White-fronted Goose (Anser albifrons) and Bean Goose (Anser fabalis) contribute most to the total number of geese population. Feeding place selection of goose depend on the season. In autumn and winter, croplands largely provided food for geese. Due to selections among fields and parts of the field, sometimes relatively high grazing pressure for the whole area may be severely multiplied in some cases resulting potentially 100% shoot defoliation on the frequented sites of a wheat field.