Search

Published After
Published Before

Search Results

  • Economic questions of precision maize production on chernozem soil
    293-296
    Views:
    127

    It is one of the main topical objective to establish the conditions of sustainable farming. The sustainable development in crop production also calls for the harmony of satisfying human needs and providing the protection of environmental and natural resources; therefore, the maximum consideratio of production site endowments, the common implementation of production needs and environmental protection aims, the minimum load on the environment and economicalness. Precision farmin encompasses the farming method which is adjusted to the given production site, the changing  technology in a given plot, the integrated crop protection, cutting edge technologies, remote sensing, GIS, geostatistics, the change
    of the mechanisation of crop production, and the application of information technology novelties in crop production. Modern technology increases efficiency and reduces costs. The efficiency of crop production increases by reducing losses and the farmer has access to a better decision support information technology system. In addition, we consider it necessary to examine the two currently most important economic issues: “is it worth it?” and “how much does it cost?”. During the analysis of agricultural technologies, we used the precision crop production experiment database of KITE Zrt. and the Institute for Land Utilisation, Regional Development and Technology of the Centre for Agricultural and Applied Economic Sciences of the University of Debrecen.
    During our analytical work, we examined three technological alternatives on two soil types (chernozem and meadow). The first technology is the currently used autumn ploughing cultivation. We extended our analyses to the economic evaluation of satellite navigationassisted ploughing and strip till systems which prefer moisture saving. On chernozem soil, of the satellite-based technological alternatives, the autumn ploughing cultivation provided higher income than strip till. In years with average precipitation supply, we recommend the precision autumn ploughing technological alternative on chernozem soils in the future. On meadow soil, the strip till cultivation technology has more favourable economical results than the autumn ploughing. On soils with high plasticity – considering the high time and energy demand of cultivation and the short amoung of time available for cultivation – we recommend to use strip till technologies. 

  • Effects of soil cultivation and environmental changes on maize yield
    97-100
    Views:
    143

    We evaluated the relationships among soil cultivation and other agrotechnical factors (fertilization, number of plants and hybrid) within the framework of a multifactorial long-term experiment set at the Látókép Experimental Site of the Centre for Agricultural Sciences of the University of Debrecen in mid-heavy chalcareous chernozem soil based on a long-term experiment conducted for a 5-year period (2002–2006).

    Based on the evaluation of soil cultivation by the average of treatments, it may be assessed that spring ploughing (8.204 t ha-1) provides more favourable conditions to the stand compared to spring shallow cultivation; however, this did not result in a significant difference. Spring ploughing considerably increased the yield of hybrid FAO 300 in dry years, whereas it considerably increased the yield of hybrid FAO 400 in favourable crop years. A stand of 70 thousand stems/ha provided the higher yield result in both soil cultivation types. It was sufficient to use a fertilizer dose of 120 kg N ha-1 for economical production.

  • Comparative examination of the tillage systems of maize on meadow chernozem soil
    21-24
    Views:
    167

    Maize production plays a major role in the agriculture of Hungary. Maize yields were very variable in Hungary in the last few decades. Unpredictable purchase prices, periodical overproduction, the increasing occurrence of weather extremities, the uncertain profit producing ability, the soil degradation processes (physical, chemical and biological degradation) and the high expenses are risk factors for producers. Due soil tillage, there is an opportunity to reduce these risks. Based on the experimental database of the Institute of Land Utilisation, Regional Development and Technology of the University of Debrecen, Centre for Agricultural and the KITE Plc., various cultivation systems were examined with maize (Zea mays L.) as indicator plant in Jász-Nagykun-Szolnok country in 2012 and 2013. The sample area can be found in the outskirts of Kenderes on a meadow chernozem soil. On the examined plot, strip-tillage, subsoiling and moldboard ploughing were performed, each on 4.5 ha, respectively.

    In general, our findings show, that strip-tillage and subsoiling can be alternative tillage systems beside moldboard ploughing on meadow chernozem soils in Hungary.

  • Complex evaluation of agrotechnical factors in rape seed
    59-63
    Views:
    99

    A polifactorial field trial with rape was carried out in the crop-years of 2007/2008 and 2008/2009 at the Látókép Research Centre of University of Debrecen, 15 km away from Debrecen. The soil type of the research area was a calcaric chernozem, with a levelled and homogeneous surface. Our investigations on the dynamics of lodging proved that rape can easily be lodged under unfavourable weather conditions, which results in a significant crop failure: In crop-year 2009 yields were 1.0-1.5 t ha-1 higher than in 2008, when the weather conditions were more unfavourable. In both crop-years the influence of sowing time on the crop yield of rape was examined in three soil cultivation systems, with ploughing, loosening or disking. Different sowing time influenced the yield of rape in both crop-years significantly. In the crop-year of 2007/2008 – due to mild winter – we got the highest yield in the first sowing time (at the end of August) with loosening (3930 kg ha-1) and disking (3727 kg ha-1), while in case of ploughing we experienced the highest yield (3770 kg ha-1) in the second sowing time. There were no significant differences between the first and second sowing time (the end of August and the beginning of September), and in the third sowing time (end of September) also a moderate crop failure (-6.7%) cold be obtained, due to the favourable weather in winter and the water supply of the crop-year 2007/2008. In 2008/2009 all the three cultivation systems showed the best yield-results in the second sowing time (ploughing: 4886 kg ha-1, loosening: 5186 kg ha-1, disking: 5090 kg ha-1), and the first sowing time hardly differed from this (-4.1%), while the late September sowing time resulted in a significant crop failure of -11.1%.

  • Evaluation of the interaction between environmental factors, cultivation and fertilisation
    103-108
    Views:
    107

    The effect of production factors on maize yield was examined in the Látókép Experiment Site of the Centre of Agricultural and Applied Economic Sciences of the University of Debrecen on calcareous chernozem soil between 2001 and 2003. The impact of environmental factors (precipitation, temperature, number of sunny hours), cultivation methods (autumn ploughing, spring shallow cultivation) and fertilisation (non-fertilised, 120 kg N + 90 kg P2O5 + 106 kg K2O, and 240 kg N + 180 kg P2O5 + 212 kg K2O) on maize yield was examined. During the three years, autumin ploughing significantly increased yield by 2.91 t ha-1 in comparison with spring shallow cultivation. The yield increasing effect of fertilisation was observed in each year, although its extent depended on the given crop year and the applied cultivation method. The higher fertiliser dose (240 kg N ha-1) did not cause significantly higher yield in either year. After the evaluation of the observed correlations, it can be established that the yield increasing
    effect of fertilisation was higher in the case of autumn ploughing in comparison with spring shallow cultivation. The environmental factors (especially the extent of precipitation) significantly affected the maize yield. 

  • Economic questions of maize production on different soil types
    289-292
    Views:
    106

    The requirements and objective of cultivation are in constant change. For example, different cultivation systems are developed for the purpose of soil protection, the preservation of its moisture content and on soils with various precipitation supply or production site conditions. Traditionally, one of the most important cultivation aims is crop needs. Further cost saving in fertilisation and crop protection can only be achieved by reducing the quality and quantity of production or it cannot be achieved at all. Furthermore, the costs can be significantly reduced by means of the rationalisation of cultivation. Energy and working time demand can also be notably reduced if ploughing is left out from the conventional tillage method. The key requirement of economicalness is to perform the cultivation at the optimal date, moisture level and the lowest possible cost.
    Within production costs, the cost of cultivation is between 3–17%, while they are between 8–36% within machinery costs. It is the vital condition the usability of each technological method to progressively reduce costs. Our evaluation work was carried out with the consideration of the yield data obtained from cooperating farms and the experiment database of the Institute for Land Utilisation, Regional Development and Technology of the Centre for Agricultural and Applied Economic Sciences of the University of Debrecen. Three technological methods (ploughing, heavy cultivator and loosening tillage) were used on several soil types which differ from in terms of cultivability (chernozem, sandy and sandy clay soils) from the economic/economical aspect. We examined the sectoral cost/income relation of maize production as an indicator plant. The maize price during the analytical period was 45 thousand HUF per t. On chernozem soils, the production of maize can be carried out on high income level, while maize production on sandy soils has a huge risk factor. The role of cultivation is the highest on high plasicity soils, since they have a huge energy
    demand and the there is a short amount of time available for each procedure in most cases.

  • Agronomical and economic evaluation of various cultivation systems on meadow soil
    103-106
    Views:
    108

    The requirements and objectives of cultivation are in constant change. There are different cultivation aims if the objective is soil protection, the prevention of its moisture content or on areas with different precipitation supply or production site endowments. Based on the experimental database of the Institute for Land Utilisation, Regional Development and Technology of the University of Debrecen, Centre for Agricultural and Applied Economic Sciences and the KITE Plc., the various cultivation systems in Hajdú-Bihar country were examined with maize as indicator plant. The sample area can be found in the outskirts of Biharnagybajom on meadow soil. On the examined plot, spring strip basic cultivation, loosening and autumn ploughing were applied on 15-15-15 ha, respectively. At the time of taking undisturbed soil samples, soil conductivity measurements were also performed with a Penetronik penetrometer. Undisturbed soil samples were taken from each treatment before sowing (on 5th April 2012). The yield obtained in the strip cultivation treatment increased that of the ploughing and the loosening technology. The economic indexes are the most favourable in the strip cultivation.

  • Effects of cultivation methods on some soil biological parameters of a meadow chernozem soil (Vertisols)
    61-66
    Views:
    78

    The effect of extended drought conditions on soil, the unfavourable cultivation technologies and the application of chemicals have been enhancing the processes of physical and biological soil degradation, so the fertility of soil is gradually declining. 
    The effects of two cultivation methods – traditional ploughing (TP) and conservation tillage (CT) – on the biological activity of a meadow
    chernozem soil were examined in a long term experiment. Different parameters of the biological activity of soil were determined. These are
    the numbers of total bacteria, microscopic fungi, aerobic cellulose decomposing bacteria, as well as the activities of some important soil
    enzymes and CO2 production.
    Conservation tillage seemed to be a more favourable cultivation method for the majority of microorganisms, the activities of urease and
    dehydrogenase enzymes and CO2 production, compared to the traditional ploughing system. These parameters increased significantly,
    especially in the upper layer of conservation tillage plots. Concerning the plant cultures, the majority of microbiological parameters were
    higher in the soil of vetch (Vicia sativa L.) depending on the cultivation methods, so involving the pulses to the crop-rotation seems to be
    very important in this soil type.
    According to the ninth year’s results, the importance of conservation tillage as a means of protecting the soil biological activity in meadow
    chernozem (Vertisols) can be established; it was proven by microbiological investigations.

  • Interactive evaluation of the main agrotechnical factors in rape production
    71-79
    Views:
    88

    Our polifactorial rape research was carried out at Látókép Research Centre of Debreceni Egyetem AMTC, 15 km away from Debrecen. The aim was to study the unique effect and the interactive effect of more factors. The research factors were the following: cultivation, time of sowing and nutrient supply. Soil moisture datas proved unambiguously that increasing amounts of chemical fertilizer raise the water consumption of rape, lack of water in fertilized plots were always bigger then the water deficit in control plots. The highest amount of water deficit was experienced in the case of arable plots. However, increasing amounts of chemical fertilizers raised the amount of yield proportionately. We experienced yield depression only in the case of arable plots at the highest level of chemical fertilization. In polifactorial rape research sowing of 24th August 2007 of 2007/2008 was the most optimal in point of the amount of yield. This is most-significant in the case of loosening tillage and disking tillage plots, while the plots of ploughing lag behind those two in point of average yield. We experienced the biggest differences of yield in the case of different tillage plots of sowing on 24t August 2007. Still not even the plot with the highest average reached the limit of 4 tons, which can be attributed to high rate of lodging and the harvest loss caused by this. The biggest amount of yield was experienced in the case of sowing of 24th August 2007, with the highest level of chemical fertilization at loosening tillage plot (3930 kg/ha). We can observe big differences between the tillage methods; plots of loosening show a much better average yield then plots of disking and ploughing tillage. Considering the first observed crop year we can state that alternative tillage methods do have a future in rape growing of Hungary. 

  • The scientific background of competitive maize production
    33-46
    Views:
    294

    The effect and interaction of crop production factors on maize yield has been examined for nearly 40 years at the Látókép Experiment Site of the University of Debrecen in a long-term field experiment that is unique and acknowledged in Europe. The research aim is to evaluate the effect of fertilisation, tillage, genotype, sowing, plant density, crop protection and irrigation. The analysis of the database of the examined period makes it possible to evaluate maize yield, as well as the effect of crop production factors and crop year, as well as the interaction between these factors.

    Based on the different tillage methods, it can be concluded that autumn ploughing provides the highest yield, but its effect significantly differed in irrigated and non-irrigated treatments. The periodical application of strip tillage is justified in areas with favourable soil conditions and free from compated layers (e.g. strip – strip – ploughing – loosening). Under conditions prone to drought, but especially in several consecutive years, a plant density of 70–80 thousand crops per hectare should be used in the case of favourable precipitation supply, but 60 thousand crops per hectare should not be exceeded in dry crop years. The yield increasing effect of fertilisation is significant both under non-irrigated and irrigated conditions, but it is much more moderate in the non-irrigated treatment.

    Selecting the optimum sowing date is of key importance from the aspect of maize yield, especially in dry crop years. Irrigation is not enough in itself without intensive nutrient management, since it may lead to yield decrease.

    The results of research, development and innovation, which are based on the performed long-term field experiment, contribute to the production technological methods which provide an opportunity to use sowing seeds, fertilisers and pesticides in a regionally tailored and differentiated way, adapted to the specific needs of the given plot, as well as to plan each operation and to implement precision maize production.

  • Using research findings in precision maize production
    227-231
    Views:
    215

    The effect of crop production factors on maize yield are examined on chernozem soil in a more than 30 year old long-term experiment on the Látókép Experiment Site of the Centre for Agricultural and Applied Economic Sciences of the University of Debrecen. The aim of research is to evaluate the effect of fertilisation, cultivation, plant number, genorype and irrigation. The analysis of the data in the database of the examined period makes it possible to evaluate the effect of maize yield, as well as that of the crop production factors and the crop year, while the correlations and interactions between these factors were also examined. During the examination of the cultivation treatments, it was concluded that the highest yield was obtained as a result of autumn ploughing, but its effect largely differs in the irrigated and the nonirrigated treatments. Based on our examinations, strip cultivation should be applied periodically (e.g. strip – strip – ploughing – loosening) in areas with favourable soil conditions free from compacted layers. 
    In years with smaller, average precipitation supply or when the precipitation was higher than average, higher plant numbers were more favourable. Under drier conditions, but especially in several consecutively dry years, a lower plant number can be recommended which is not higher than 60 thousand per hectare. In the case of favourable water supply, 70-80 thousand plants per hectare can be  used. The yield increasing effect of fertilisation was significant in the case of both non-irrigated and irrigated conditions, but it was much more moderate in the non-irrigated treatment. The extent of weed coverage was significantly affected by the previous crop. In the case of a favourable previous crop (wheat), the weed coverage was significantly lower than after an unfavourable previous crop (maize). In the case of the same previous crop (maize), the extent of weed coverage was mostly determined by the crop year and the extent of precipitation supply. Irrigation is not enough in itself, because if it was not accompanied by intensive nutrient management, yields started to decline.
    The results of researhc, development and innovation contributed to the technological method which makes it possible to apply locally adjusted sowing seed, fertiliser and pesticide in a differentiated way, as well as to change the method of operations within the given plot.

  • Evaluation of striptillage and conventional tillage in maize production
    37-40
    Views:
    161

    Tillage changes soil properties and the way how the environment affects those properties. Soil properties and environment determine the rate of water movement in liquid and gaseous form into and out of soil. Based on the experimental database of the Institute of Land Utilisation, Regional Development and Technology of the University of Debrecen, Faculty of Agricultural and Food Sciences and Environmental Management and the KITE PLC, various cultivation systems were examined with maize (Zea mays L.) as indicator plant in Jász-Nagykun-Szolnok county. The sample area can be found in the outskirts of Kenderes on a meadow chernozem soil. On the examined plot, strip-tillage, subsoiling and moldboard ploughing were performed, each on 4.5 ha, respectively. The purpose of the present study is to compare these cultivation systems according to the soil- and maize kernel moisture content and to the yield based on the years of 2012 and 2013.

  • Effects of Tillage Systems on Physical Status and Organic Matter Turnover of the Soil
    42-45
    Views:
    183

    The cultivation technology for those plant, that play a key role in arable land production need to be renewed in order to reduce production costs and to protect arable land. The modernisation of technologies can only be achieved by applying appropriate tillage systems. Our measurements were carried out on chernozem soil with lime deposits at the Látókép Experimental Station of the Center for Agricultural Sciences, Debrecen University, in long term tillage experiments set up in 1989. We examined the typical physical parameters, the albedo, field capacity, the bulk density of the soil, organic carbon content (humus %) and the measured pH-values in the water solution within the two tillage variations. We have also modelled nitrogen cycle formation in different treatments.
    A significant difference occured between the albedos of the two soils, which may be the result of significant amounts of stem remaining on the surface in the case of the reduced tillage method. The yellow, waxy stem of maize reflects 21% of the sun’s rays, especially at the beginning of the vegetation period, when its decomposition has only just started. This delys the warming up in early spring, which delays the sowing time of maize and reduces evaporation. In the two tillage variations, the water management characteristics do not differ practically, the wilting point field capacity are in accordance. In reduced tillage methods, the so-called „plough-pan” can be well measured at 15-20 cm, while in winter ploughing it is at 30 cm. The humus % of the soil does not differ in the two tillage variations, but due to the difference in bulk density this means a different humus and organic nitrogen content. The organic nitrogen content is greater in the reduced tillage method. On the basis of pH value evaluations, we could not detect significant differences in the two tillage variations. The organic nitrogen content of areas where reduced tillage method was applied is higher than in areas where conventional winter ploughing was applied.

  • Examination of the physical state of the soil under conventional and reduced tillage systems
    183-186
    Views:
    154

    he effect of reduced and conventional tillage systems on soil compaction and moisture content in two years with extreme weather conditions is introduced in this paper. The investigations were carried out in a long-term soil cultivation experiment set on a heavy textured meadow chernozem soil at the Karcag Research Institute. In 2010 the amount of precipitation during the vegetation period of winter wheat was 623.3 mm, 2.2 times higher than the 50-year average, while in 2011 this value was 188.7 mm giving only 65% of the average. The examinations were made after harvest on stubbles on 4 test plots in 5 replications in the case of each tillage system. Soil compaction was characterised by penetration resistance values, while the actual soil moisture contents were determined by gravimetry. The values of penetration resistance and soil moisture content of the cultivated soil layer were better in the case of reduced tillage under extreme precipitation conditions. It could be established that regular application of deep soil loosening is essential due to the formation of the unfavourable compact soil layer under 30 cm. Conventional tillage resulted in enhanced compaction under the depth of ploughing, the penetration resistance can reach the value of 4 MPa under wet, while even 8 MPa under dry soil status.

  • Organic soybean production in Hungary
    45-52
    Views:
    160

    Organic soy production, particularly for feedstuff in organic animal husbandry, is needed in Hungary and the EU regions. Soybean producing crop area in Hungary has increased in the last years, however, the agroecological potential would allow for a larger soybean production area. This study presents the soybean market in Hungary, and the role of soybeans in protein supply in food and feed, summarising the critical elements of organic soybean production from variety selection to marketing. During the field research, the effects of the agronomical environment on yield potential factors were examined. We aimed to determine how different row spacing and tillage systems affect organic soybean yields of different varieties, with particular attention to the dry region, and determine the specific methods and varieties of soybean that favour these areas. We found that the tillage (plough/grubber), the spacing (wide/narrow), and the variety effects were all significant on morphological variables. The most remarkable difference was seen in plant height and the number of pods per plant, while the number of nodes was also highly impacted by tillage treatment and variety. The nutrition variables were significantly different, mainly as an effect of tillage and spacing interaction with significantly different plant responses of varieties.

  • Causes of floods and flood protection in Subcarpathia
    72-75
    Views:
    95

    Subcarpathia is one of the richest regions in surface waters in the Ukraine. Due to its geographical, relief and climatic conditions, it belongs to the active precipitation zone, where great floods frequently occur. As a result of many years of observation, it can be concluded that the interactions of many natural factors can lead to various floods in the catchment area of the river Tisza. These are mostly hydro-meteorological factors, which can lead to great floods with the characteristics of the formed flow. Human activity also significantly influences the occurance of floods: clearing, which can accelerate the process of the runoff, ploughing in the catchment area, which can lead to erosion and the utilisation of areas endangered by floods for various economic sectors.
    A series of questions arose in recent years regarding the formation of floods: what could be the causes of floods and what actions need to be made to prevent them. The evaluation of floods made us conclude that passive protection by using dams does not always ensure protection against floods as these were constructed in different times for different water levels. Many factors can affect the whole process which cannot be foreseen, therefore the development of new solutions and new technologies is necessary in flood protection.