Search

Published After
Published Before

Search Results

  • Phytotoxicity levels in a wet year in an experiment on maize sensitivity to herbicides
    92-96
    Views:
    168

    The phytotoxic effects of herbicides applied pre-, early post- and post-emergence were studied in maize in a herbicide sensitivity experiment were set up in Martonvásár and Törökszentmiklós. The herbicides were applied in normal and in double doses to 37 Martonvásár inbred lines and to six parental single crosses. The small-plot experiments were set up in two replications. The wet weather that followed the pre- and early post-emergence treatments promoted the appearance of phytotoxic symptoms on maize. The degree of phytotoxicity was recorded on the 14th day after post-emergence treatment and on the 14th and 28th days after the pre- and early postemergence treatments. Herbicides applied pre-emergence only caused slight symptoms on maize. Although the double dose increased the damage, it was still not more than 5% on average. The symptoms caused by herbicides applied in the early post-emergence stage were more intensive than those detected in the pre-emergence treatments. However, the damage caused by the double dose of isoxaflutol + thiencarbazone-methyl and by the split treatment with nicosulfuron remained below 10%. The symptoms became somewhat more severe at the 2nd scoring date. Among the post-emergence treatments the maize genotypes had the least tolerance of the mesotrione + nicosulfuron combination of active ingredients, where the double quantities resulted in 13–14% damage in average.

  • Changes in the herbicide tolerance of maize genotypes in wet and dry years
    124-127
    Views:
    69

    The tolerance of 15 inbred maize lines grown on chernozem soil with forest residues in Martonvásár was tested against herbicides applied post-emergence in two dry, warm years (2003 and 2011) and in two cool, wet years (2004 and 2010). The herbicides mesotrione + terbutylazine, nicosulfuron and dicamba were applied to maize inbred lines in the 7–8-leaf stage at the maximum dose authorised for practical use and at double this rate. The plants were scored for the intensity of visible phytotoxic symptoms 14 days after treatment.
    The level of phytotoxicity observed in dry, warm years was 5.14%, averaged over the lines, herbicides and rates. The intensity of visible symptoms was almost 2.5 times as great in cool, wet years (12.76 %).
    Averaged over the four years, the lines and the rates, the least damage was caused by dicamba (5.77 %), followed by mesotrione + terbutylazine (7.23 %). The most severe symptoms were induced by nicosulfuron (16.17 %). This could be attributed to the fact that some of the inbred lines were extremely sensitive to herbicides, especially those of the sulfonylurea type.
    A difference of more than 1.5 times was observed between the two doses, but the correlation between the concentration and the severity of the visual symptoms was not strictly linear. Compared to the normal dose (100 %) the double rate resulted in a 162.5% increase in symptom severity. In most cases plants treated with the normal dose were symptom-free or only exhibited a low level of phytotoxicity.

  • Herbicide tolerance of maize genotypes in the wet 2016 year
    13-18
    Views:
    145

    The herbicide tolerance levels of 49 Martonvásár inbred parents were examined in Martonvásár in a herbicide susceptibility trial in 2016. The normal dosage recommended in the permit documentations and double dosage were used for the 12 small-plot herbicide treatments performed in two repetitions. Spraying of early post-emergent herbicides was carried out in the 1–2-leaf stage, while post-emergent treatments were applied in the 7–8-leaf stage of maize. The extent of phytotoxicity was scored for the early post-emergent herbicides two and four weeks after treatments and for the post-emergent herbicides two weeks after treatments, respectively. Some of the herbicides examined are not approved in seed production; however it is important to know the reaction of maize parent genotypes for every type of herbicides. The active agent topramezone was withdrawn from the market in 2015, but it was included in the trials as its usage was allowed until stocks run out in 2016. The herbicide agents were examined as follows: mesotrione + S-metolachlor + terbutylazine; isoxaflutol + tiencarbazon methyl + cyprosulfamide; isoxaflutol + cyprosulfamide; mesotrione + terbuthylazine; tembotrione + isoxidifen-ethyl; mesotrione + nicosulfuron; prosulfu ron; nicosulfuron +prosulfuron + dicamba; bentazone + dicamba; nicosulfuron; topramezone; foramsulfuron + isoxadifen-ethyl.
    Among early post-emergent herbicides, isoxaflutol + cyprosulfamide caused the less phytotoxic damage in the genotypes. The large amount of precipitation during the spring facilitated the infiltration of the active ingredient S-metolachlor, used regularly and successfully also in seed production, into the root zone, resulting in phytotoxic symptoms on susceptible inbred lines at the time of the first inspection. These genotypes recovered by the end of the vegetation period. The spring weather was cooler than usual, retarding the development of maize and thus led to the slower fermentation of herbicide active ingredients, accordingly, all of the post-emergent herbicides caused visible phytotoxic symptoms on some of genotypes. The most severe damages were generally caused by the double dosage of nicosulfuron + prosulfuron + dicamba, nicosulfuron, and foramsulfuron + isoxadifen-ethyl.

  • Sensitivity of maize to herbicides in experiments in Martonvásár in 2015
    47-52
    Views:
    157

    The phytotoxic effect of herbicides applied post-emergence was investigated in a herbicide sensitivity experiment set up on parental maize genotypes in Martonvásár. A total of 48 Martonvásár inbred lines and 12 single line crosses were included in small-plot experiments set up in two replications. Ten herbicides were applied at the normal authorised rate and at twice this quantity. Compounds intended for pre-emergence application were applied when maize was in the 3–4-leaf stage and post-emergence herbicides in the 7–8-leaf stage of development. The extent of phytotoxicity was scored two weeks after treatment. Some of the herbicides tested are not authorised for use in seed production fields, but it is important to know how the parental genotypes respond to all types of herbicides. Phytotoxic symptoms of varying intensity were only observed on a third of the 60 parental genotypes examined; the majority of the lines exhibited no reaction to any of the herbicides. Averaged over the 60 genotypes the level of phytotoxic damage was less than 10% for the single dose. When the double dose was applied somewhat more severe damage was induced by products containing Mesotrione + Nicosulfuron or Foramsulfuron + Isoxadifen-ethyl, but this was still below 15%. The herbicide dose had a three times stronger influence on the intensity of the symptoms than the type of herbicide. With the exception of Topramezone, there was a significant difference between the effects of the normal and double doses. The greatest dose effect differences, in decreasing order, were observed for Mesotrione + Nicosulfuron, Foramsulfuron + Isoxadifen-ethyl. Nicosulfuron and Mesotrione + Terbutylazine. The Mesotrione + Terbutylazine active ingredient combination only caused mild (<10%) symptoms on a total of 11 genotypes, while the Mesotrione + Nicosulfuron combination induced more severe phytotoxic symptoms on 26 lines. When Nicosulfuron was applied alone it caused milder symptoms on fewer genotypes than in combination with Mesotrione. Among compounds of the sulphonyl-urea type, the least severe symptoms on the fewest genotypes were recorded in the case of Prosulfuron.

  • Effect of molybdenum treatment on the element uptake of plants in a long-term experiment
    121-125
    Views:
    101

    Molybdenum as a constituent of several inmportant enzymes is an essential micorelement. It can be found in all kind of food naturally at low level, however, environmental pollution, from natural or anthropogenic sources, can lead to high level of the metal in plants. Our study is based on the long-term field experiments of Nagyhörcsök, where different levels of soil contamination conditions are simulated. Plant samples were collected from the experiment station to study the behaviour of elements: uptake by and transport within the plants, accumulation in different organs, phytotoxicity and effects on the quantity and quality of the crop.
    In this work we present the effect of molybdenum treatment on the uptake of other elements. Molybdenum is proved to be in an antagonist relationship with copper and sulphur, while molybdenum-phosphorus is a synergist interaction.
    However, in most of the plants we studied increasing molybdenum-treatment enhanced cadmium-uptake. We have found the most significant cadmium-accumulation in the case of pea, spinach and red beet.

  • Effect of molybdenum treatment on the element uptake of food crops in a long-term field experiment
    75-79
    Views:
    123

    Molybdenum, as a constituent of several important enzymes, is an essential microelement. It can be found in all kind of food naturally at low
    levels. However, environmental pollution, from natural or anthropogenic sources, can lead to high levels of the metal in plants. Our study is based on long-term field experiments at Nagyhörcsök, where different levels of soil contamination conditions are simulated. Plant samples were collected from the experiment station to study the behavior of elements: uptake by and transport within the plants, accumulation in different organs, phytotoxicity and effects on the quantity and quality of the crop. In this study, we present the effect of molybdenum treatment on the uptake of other elements. Molybdenum is proved to be in an antagonist relationship with copper and sulphur, while molybdenum-phosphorus is a synergist interaction. However, in most of the plants we studied, increasing molybdenum-treatment enhanced cadmium uptake. We found the most significant cadmium accumulation in the case of pea, spinach and red beet. 

  • Yield of herbicide tolerant sunflower hybrids due to the different herbicide treatments
    121-125
    Views:
    118

    Sunflower is our most important oil-plant grown on the largest area in Hungary. In Europe sunflower has been grown since the 16th century. In recent years sunflower growing area is between 450-500 thousand hectares. Weed management in sunflower production is getting more and more difficult in case of annual and perennial dicotyledonous weeds, especially in dry springs. Two active ingredients, imazamox and tribenuron-methyl could be a solution for farmers for the control of these weeds in herbicide tolerant sunflower hybrids (Christensen-Reisinger 2000, Hódi-Torma 2004, Nagy et al. 2006). Most of the farmers choose the Clearfield technology and the use of tribenuron-methyl herbicides. In 2009 imazamox- (IMI) and tribenuron-methyl- (SU) tolerant sunflower hybrids were produced on 200 hectares in Hungary, of which 150 hectares was IMI, while 50 hectares was SU-hybrids. Small plot experiments were carried out to investigate the phytotoxicity of herbicides on imazamox (IMI) and tribenuron-methyl (SU) tolerant sunflower hybrids under field conditions. At harvest we measured the moisture content of achenes and average yield.

  • Effect of molybdenum treatment on uptake of plant and soil molybdenum content in a field experiment
    117-122
    Views:
    113

    Molybdenum is not a well-known microelement, but being a constituent of several important cellular enzymes it is an essential microelement. Molybdenum occurs in all foods, but at very low levels. There does not appear to be any particular foods or types of foods, which in the absence of extrinsic factors, naturally have high levels of molybdenum. However, environmental pollution, from natural or anthropogenic sources, can lead to high level of the metal in plants.
    Our study is based on the long-term field experiments of Nagyhörcsök, where different levels of soil contamination conditions are simulated. Soil and plant samples were collected from the experiment station to study the behaviour of molybdenum: total concentration, available  concentration, leaching, transformation, uptake by and transport within the plants, accumulation in different organs, phytotoxicity and effects on the quantity and quality of the crop. In this work we present the results of maize and peas and the soil samples related to them.
    According to our data molybdenum is leaching from the topsoil at a medium rate and it appears in the deeper layers. In the case of plant samples we found that molybdenum level in the straw is many times higher than that is in the grain, so molybdenum accumulates in the vegetative organs of the plant. The data also show differences in the molybdenum-uptake of cereals and Fabaceae (or Leguminosae).

  • Effect of Copper, Zinc and Lead and Their Combinations on the Germination Capacity of Two Cereals
    39-42
    Views:
    427

    The majority of researchers have studied the following group of microelements: B, Zn, Mn, Cu, Na, Co, Mo, I, Sn, Cl, Al, V, F, Cr, Hg, Cs, Li, Cd, As, Th, Rb, Cr, W, Ti, Sn, Se, Ba, Br. Sporadically, the following elements have been mentioned too: Au, Ra, Hg and Pb. In this study, the effects of copper treatments and their combination with zinc and lead microelements on the germination of maize and barley were investigated using different concentrations of these microelements. Six treatments were used: 1. Copper-sulphate (CuSO4) applied alone, 2. Zinc-sulphate (ZnSO4) applied alone, 3. Copper applied with zinc, 4. Lead-nitrate (Pb(NO3)2) applied alone, 5. Copper applied with lead and 6. Untreated control. Maize (Kiskun SC 297) and barley caryopsis were treated with copper and zinc solutions in the following concentrations: 0.03%, 0.003% and 0.0003%. Maize and barley caryopsis were treated with these solutions for 12 and 24 hours. Maize and barley caryopsis were also treated with lead solutions Pb(NO3)2 with different concentrations: 0.0005%, 0.005% and 0.05%. Maize and barley were treated with these solutions for 12 and 24 hours. In the combined treatments (3 and 5), the same concentration was used for each microelement as in treatments 1, 2 and 4. Control treatments were treated with water for both plant species. Our results showed that copper microelements significantly inhibit germination compared to the untreated control. The toxicity of copper is higher if concentration increases. Zinc microelements also inhibit germination, however its effect highly depends on the microelement concentration. Treatments of copper + zinc also inhibit germination. The two microelements applied together cause more phytotoxicity than they do alone. Lead is highly toxic to plants even in low concentrations. The toxic effect on germination dramatically increased when lead was applied with copper.