Search

Published After
Published Before

Search Results

  • Sensitivity of methods for estimating reference evapotranspiration
    51-56
    Views:
    129

    The knowledge of the evapotranspiration of natural ecosystems and plant populations is of fundamental importance in several branches of science, research topics and practical uses. Nevertheless, the harmonization of the large number of methods and the changing user needs often causes problems. Sensitivity analysis of 10 ET0 estimation models and model variants was performed. Magnitude of the obtained outputs and the changes triggered by each atmospheric parameter were evaluated. The objective of the analyses was to get to know the sensitivity of the different models and to select the most accurate and the most suitable ones for adaptation to local circumstances. Therefore, it becomes possible to achieve as high accuracy as possible in applications which need ET0 estimation.

  • Climatic water balance in Hamelmalo, Eritrea
    69-76
    Views:
    159

    Agricultural production is an important sector for peoples to live, but it is highly affected by climate change. To have a good production we need to understand the climatic parameters which adversely affect production. Hamelmalo, which is located in the semi-arid area of Eritrea, is vulnerable to climate change and this is realised in the total production loss. Nevertheless, there is no concrete reference about the climate of the region due to lack of data for a long time. Changes in precipitation (P), evapotranspiration (ET) and, implicitly, in the climatic water balance (CWB), are imminent effects of climate change. However, changes in the CWB, as a response to changes in P and ET, have not yet been analysed thoroughly enough in many parts of the world, including Eritrea. This study also explores the changes of the CWB in the Hamelmalo region, based on a wide range of climatic data (P, relative air humidity and evaporation pan necessary for computing potential evapotranspiration (PET) with the pan evaporation method) recorded at Hamelmalo from 2015-2019. This analysis shows that the annual cumulative CWB for Hamelmalo is negative in 67% of the years. The dry season without precipitation leads to negative CWB and the change in CWB only starts from the raining or crop season. Based on this recent study, 2015 had the highest PET and lowest P, and this resulted in the lowest CWB in the investigated period. Opposite to this, 2019 had lower PET and highest P, which led to the highest CWB. However, the monthly values of CWB did not correlate with the annual P or ET. On the base of our study, it can be concluded that PET and P were very variable in the investigated years and P was the most influential elements of CWB.

  • Calculating possibility of the leaf area index of apple and pear trees
    229-233
    Views:
    110

    A significant proportion of the aboveground green and dry weight of the plant constitutes the foliage. The canopy is an important factor of plant growth. On one hand the canopy absorbs the solar energy, which is necessary for the photosynthesis, on the other hand accumulates the absorbed nutrients by the roots, and the most of the water-loss happens through the foliages. The determination of the full canopy is not an easy target. In our research we developed a measurement method to determine the leaf area. With the parameters of the examined tree (leaf length and maximum width) and the data of ADC AM 100 leaf area scanner we determined the k-value, with which we can easily and fast evaluate the leaf surface.

  • Usage of Different Spectral Bands in Agricultural Environmental Protection
    123-126
    Views:
    81

    Hyper and multispectral imaging systems are widely used in agricultural and environmental protection. Remote sensing techniques are suitable for evaluating environmental protection hazarsd, as well as for agriculture resource exploration. In our research we compared aerial hyper and multispectral images, as well as multispectral digital camera images with the background data from the test site. Hyperspectral records were obtained using a new 80-channeled aerial spectrometer (Digital Airborne Imaging Spectrometer /DAIS 7915/. We have chosen two farms where intensive crop cultivation takes place, as test sites, so soil degradation and spreading of weeds can be intensive as a result of land use and irrigation. We took additional images of air and ground with a TETRACAM ADC wide band multispectral camera, which can sense blue, green and near infrared bands. We had detailed GIS database about the test site. Weed and vegetation map of the area in the spring and the summer was made in 2002. For soil salt content analysis, we gathered detailed data frome an 80x100 m area. When analyzing the images, we evaluated image reliability, and the connection between the bands and the soil type, pH and salt content, and weed mapping. In the case of hyperspectral images, our aim was to choose and analyze the appropriate band combinations. With a TETRACAM ADC camera, we made images at different times, and we calculated canopy, NDVI and SAVI indexes. Using the background data mentioned above, the aim of our study was to develop a spectral library, which can be used to analyze the environmental effects of agricultural land use.

  • Biomass production estimation of processing tomato using AquaCrop under different irrigation treatments
    131-136
    Views:
    187

    The wiser usage of irrigation water is inevitable in the future. Irrigation has very high input cost; therefore, farmers must carry out irrigation with care. Also, the effect of irrigation on crops has a big role in decision making. Modeling provides a possibility to evaluate this effect. AquaCrop, as a crop production simulation model has great potential in this field. The accuracy of tomato biomass yield prediction of the model was tested in this research. For collecting the necessary data, a field experiment was conducted at Szarvas on processing tomato with different water supplies, such as 100% (I100), 75% (I75), 50% (I50) of potential evapotranspiration and a control with basic water supply (C). The relation of the simulation and actual biomass yields was evaluated during the season. Very good correlation was found between the modelled and the actually harvested data. The data for the control and I100 treatments showed higher correlation than the I75 and I50. The relationship for all of the data was moderately strong. Miscalculations occur mostly when the dry biomass yield reaches
    7 t ha-1. The accuracy of the model was evaluated with the use of mean absolute error (MAE) and root mean squared error (RMSE) values. The least error was found in the C treatment, which means 0.34 MAE and 0.45 t ha-1 RMSE. The simulation resulted in higher errors in the I75 and I50 treatments.

  • Evaluation of water balance in apple and pear trees
    193-198
    Views:
    102

    A significant proportion of the aboveground green and dry weight of the plant constitutes the foliage. The canopy is an important factor
    of plant growth. On one hand the canopy absorbs the solar energy, which is necessary for the photosynthesis, on the other hand accumulates
    the absorbed nutrients by the roots, and the most of the water-loss happens through the foliages. The determination of the full canopy is not
    an easy target. In our research we developed a measurement method to determine the leaf area. With the parameters of the examined tree
    (leaf length and maximum width) and the data of ADC AM 100 leaf area scanner we determined the k-value, with which we can easily and
    fast evaluate the leaf surface. Furthermore we defined from the water balance of compensation lysimeters the cumulative transpiration of
    fruit trees and the efficiency of water use of trees.

  • Application of AquaCrop in processing tomato growing and calculation of irrigation water
    183-187
    Views:
    293

    The area and volume of processing tomato production is increasing in Hungary. Irrigation is crucial for processing tomato growing. To save water and energy, it is important to know exactly how much water is needed to reach the desirable quality and quantity. AquaCrop is a complex software, developed by FAO, which is able to calculate irrigation water needs, several stress factors and to predict yields. A field experiment was conducted in Szarvas in processing tomato stands, under different irrigation treatments. These were the following: fully irrigated plot with 100% of evapotranspiration (ET) (calculated by AquaCrop), deficit irrigated plot with 50% of ET (D) and control (K) plot with basic water supply was also examined. Dry yield, crop water stress index and soil moisture were compared to modelled data. The yields in the plots with different access to water were not outstanding in the experiment. The model overestimated the yields in every case, but the actual and modelled yields showed good correlation. AquaCrop detected stomatal closure percentages only in the unirrigated plot. These values were compared to CWSI – computed from leaf surface temperature data, collected by a thermal cam in July – and showed moderately strong correlation. This result suggests that Aquacrop simulates water stress not precisely and it is only applicable in the case of water scarcity. Soil moisture data of the three plots were only compared by means. The measured and modeled data did not differ in the case of K and ET plots, but difference appeared in the D plot. The obtained results suggest that the use of AquaCrop for monitoring soil moisture and water stress has its limits when we apply the examined variables. In the case of dry yield prediction overestimation needs to be considered.