Search

Published After
Published Before

Search Results

  • Quality management and traceability in crop production
    273-277
    Views:
    125

    Today, food safety and quality is an everyday issue. Scandals in the food industry drew attention to the role and responsibility of food producers in the food chain. The European Union has set up a new integrated approach towards food safety, to which Hungary as an EU member and export-oriented country has also joined. The new “from farm to fork” principle states that food and feed production cannot be handled separately, as only feed produced from good quality raw materials can ensure safe food products. Another important issue is the traceability of products, allowing for the localization and recall of the defected item. In Hungary, there have been different documentation systems for tracking and tracing products, such as the land register in crop production, animal register in the livestock sector and hygiene registers in the food industry. In order to meet EU requirements, there is a growing number of initiatives to include primary production in the scope of food safety standards. The study introduces and compares the various management systems used in crop production.

  • The effect of water supply and crop year on the yield potential of sweet maize (Zea mays L. convar. saccharata Koern.) hybrids with different genotypes
    203-210
    Views:
    156

    The successfulness of crop production is significantly affected by not only the the average yields that provide cost effectiveness, but also the success of striving for yield safety, therefore, varieties and hybrids tolerant to environmental stress factors are worth being included into the sowing structure. Our aim was to further the decision making of producers in prepaering the right sowing structure by the evaluation of sweet maize hybrids’ tolerance to excess rainfall.
    We performed our examinations in an extremely wet year (2010) on chernozem soil on three sweet maize hybrids (GSS 8529, GSS 1477, Overland) in 12 replications. Comparing the yields of 2010 with those that can be expected under optimal rainfall conditions, we showed that the examined hybrids react to the amount of rainfall higher than their needs with yield depression. The excess rainfall tolerance of the examined hybrids is different in the case of each hybrid.

  • The effect of sowing time on the yield and the variance of the seed moisture content a harvest of maize (Zea mays L.) hybrids
    39-49
    Views:
    90

    Sowing time is an important crop technology element of maize. We studied the effect of this factor on the growth and production of maize in an experiment carried out near Hajdúböszörmény, in 2003 and 2004, and near Debrecen, in 2005.
    The soils of the experiments were humic gley soil and chernozem. Weather in both years differed greatly. 2003 was drought. Neither the distribution, nor the quantity of the precipitation were suitable in the growing season for maize. This fact basically determined the results.
    In 2004 and in 2005, there were favorable and rainy seasons. The distribution and quantity of precipitation were suitable between April and September. The average temperature was also suitable for maize.
    In 2003, we tested seven hybrids at four sowing times. Hybrids with a shorter vegetation period gave the highest yield at the later sowing time, while the hybrids with a longer vegetation period gave them at the earlier sowing time. The yield of PR34B97, PR36N70, PR36M53 hybrids were the best at every sowing times. The moisture loss of hybrids in the late maturity group was faster in the maturity season, but the seed moisture content was higher than the hybrids with early sowing time. The seed moisture content was very low due to the droughty year. In two hybrid cases, this value was higher than 20% only at the fourth sowing time.
    In 2004, we examined the yield and seed moisture contents of nine hybrids. In the favorable crop year, the yield of every hybrid was the highest at the second and third sowing times. Yields of PR34H31 and PR38B85 hybrids were significant. The seed moisture content at harvest was higher than the previous year, due to the rainy season. In the case of hybrids sown later, this value was higher by 30%. However, we noticed that this value was lower at the earlier sowing time, than at the later.
    In 2005, we applied three sowing times. Unfortunately, the results of the third sowing time could not be analyzed, due to the low plant density. The yield of the six hybrids varied from 12 to 14 t/ha at the first sowing time. At the second sowing time, the yields fluctuated and each hybrid had the lowest yield, except the PR37D25 hybrid. At the latest sowing time, the yield of the PR34B97 hybrid was the lowest. However, this low yield was due to damage from the Western corn rootworm (Diabrotica virgifera) imago. The moisture content at harvest of the hybrids varied from 16 to 24% at the first sowing time. Yields at the second sowing time were higher. The low yield of the PR34B97 hybrid coupled with a higher seed moisture content. In addition, the maximum value of the LAI was more favourable at the first sowing time, and ranged between 5-5.5 m2/m2.
    The crop year had a more dynamic effect on maize than the sowing time. First of all, the quantity and distribution of precipitation played an important role in respect to yield safety.

  • The Effect of Sowing Time and Plant Density on the Yield of MaizeHybrids
    95-104
    Views:
    71

    The crop technology of maize has two important elements, sowing time and plant density. In 2003 and 2004 we studied the effect of these two factors on the growth and production of maize in an experiment carried out near Hajdúböszörmény.
    The soil of the experimental plots was meadow soil.
    Weather in both years was differed greatly. 2003 was drought. Neither the distribution nor the quantity of the precipitation were suitable in the growing season for maize. This fact basically determined the results.
    In 2004, we could talk about a favorable and rainy season. The distribution and quantity of precipitation was suitable between April and September. The average temperature was also suitable for maize.
    Results of the sowing time experiment:
    In 2003, we tested seven hybrids at four sowing times. Hybrids in the early maturity group gave the highest yield at the later sowing time, while the hybrids of the long maturity group gave it at the earlier planting time. The yield of PR34B97, PR36N70, PR36M53 hybrids was the best at every planting time. The moisture loss of hybrids in the late maturity group was faster in the maturity season, but the seed moisture content was higher than the hybrids with early sowing time. The seed moisture content was very low due to the droughty year. In two hybrid cases, this value was higher than 20% only at the fourth sowing time.
    In 2004, we examined the yield and seed moisture content of nine hybrids. In the favorable crop year, the yield of every hybrid was the highest at the second and third sowing time. Yields of PR34H31 and PR38B85 hybrids were significant. The seed moisture content at harvest was higher than the previous year due to the rainy season. In the case of hybrids sown later, this value was higher by 30%. However, we noticed that this value was lower at the earlier sowing time than at the later.
    The crop year had a more dynamic effect on maize than the sowing time. First of all, the quantity and distribution of precipitation played an important role in respect to yield safety.
    Results of the plant density experiment:
    We tested the reaction of hybrids at four plant densities (45,000, 60,000, 75,000 and 90,000 stock/ha) every two years. In 2003, the tested seven hybrids reached the highest yield at the 90,000 stock/ha in the face of a droughty year. The effect of forecrop and favorable nutrients caused these results. In the rainy 2004 year, the yield grew linear with the growing plant density. The yield of the best hybrids were 14-15 t/ha at the 90,000 stock/ha.
    Such a high plant density (90,000 stock/ha) couldn’t adaptable in farm conditions in rainy season. It is practical to determine the interval of plant density besides the optimum plant density of hybrids which gave correct yield. The farmers have to use the low value of this interval due to the frequent of the droughty years.

  • Adequate responses to plant protection policy
    33-35
    Views:
    70

    The head of crop protection in the Central Agricultural Office offers a survey of the lately reconstructured official structure, outlines the sections of Central Directorate, sketches the roles of County Government Bureaues. To keep the standard of knowledge changes are necessary to make in the higher education of plant protection specialists. The prersentation will concern the contacts between researches made on universities and agricultural official directorates. It is analized the regulation of present and future pesticide usage, the possible alternatives of reduced quantity pesticide usage including the application of Integrated Plant Management (IPM) as well. The tasks of national activity according to the EU direcives about sustainable pesticide usage touch the problems of plant protection machinery and environment safety. It is summarized the tasks of official directorate, chamber of crop protection specialists, moreover practice of plant protection for the nearest future.

  • Comparative analysis of sample preparation methods to determine the concentration of arsenic in soil- and plant-samples
    167-170
    Views:
    131

    Arsenic contamination of the fields and groundwater is a global problem. Alföld is the most affected area in Hungary. Irrigation witharsenic contaminated water, and crop production on the contaminated soil can cause a food safety problem, because arsenic is easy taken up by the cell of the plant roots. To prevent this, very important to monitoring the arsenic content of soils and plants. Inductively coupled plasma mass spectrometry (ICP-MS) is a fast, easy method to determined the concentration of minerals in the case of plant and soil samples The analytical methods can give reliable, results if the analytical process, including the sample preparation method, is the best. The objective of this study was to compare 3 type of sample preparation method which was dry ashing, wet digestion in open system, and microwave digestion. As a result of our experiement shows the microwave digestion is the appropriate method to determined the arsenic content of soil samples. In the case of plant samples we can use wet digestion in open system or microwave digestion as a samle preparation method.

  • The role of disease resistance in the registration of crop varieties in Hungary
    27-29
    Views:
    128

    Variety testing including disease resistance test of the major crops has been carrying out since the 1960’s in Hungary. Testing for resistance of the new candidate varieties is performed in the so-called VCU (Value for Cultivation and Use) trials under natural infection and in special small-plot or micro-plot trials using different disease provocative methods. Disease resistance, especially those of multiple and horizontal-type (race non-specific, partial or durable) resistances, has recently become a key limiting factor in the state variety registration. The role of disease resistance in the decision-making process of variety registration is demonstrated on the examples of winter wheat and sunflower as two major field crops in Hungary.

  • Environmental inspection agro tech – guarantee sustainable development agricultural systems
    41-42
    Views:
    129

    Shown the expediency of the environmental expertise technologies of growing crops in terms of impact on soil fertility, crop phytosanitary status, quality, chemicals migration, biological soil activity, crop productivity, which ensure avoidance of adverse impact on the environment and human health.

  • Studies of plant density increase – on maize hybrids of various genotypes on chernozem soil
    87-92
    Views:
    137

    The yield and crop safety of maize are influenced by numerous ecological, biological and agrotechnical factors. It is of special importance to study one of the agrotechnical elements, the plant density of maize hybrids, which is influenced by the growing area conditions and the selected hybrid.

    We have investigated the effects of three different plant numbers (50 thousand plants ha-1, 70 thousand plants ha-1 and 90 thousand plants ha-1) on the yield of 12 maize hybrids of different genotypes in Hajdúság, on calcareous chernozem soil, in the Látókép Research Farm of the University of Debrecen, Centre for Agricultural Sciences, in 2013. The experiment was set in four replications, besides commonly applied agrotechnical actions. In the experiment, 1 hybrid of very early (Sarolta), 9 of early (P 9578, DKC 4014, DKC 4025, P 9175, NK Lucius, Reseda, P 37N01, DKC 4490, P 9494) and 2 of medium (Kenéz, SY Afinity) maturation were used.

    With the increase of the plant number, the number of individuals per unit area increases. According to our experimental results, we have concluded that with the increase of the plant number, the yield increased in the average of the hybrids. In the average of the hybrids, in the case of 50 thousand plants ha-1, the yield was 13 130 kg ha-1, in the case of 70 thousand plants ha-1, it was 13 824 kg ha-1, while in the case of 90 thousand plants ha-1, the yield became 13 877 kg ha-1.

    In addition to plant density increase, it is necessary to determine the optimal plant number that is the most favourable for the certain hybrid under the given conditions. To fulfil this aim, we have determined the optimal plant number corresponding to the maximum yield of the given hybrid, within the given plant number range. The optimal and applied plant numbers differ, since the optimal one could only be applied under ideal conditions. Since the agrotechnical actions cannot always be carried out in appropriate quality and one has to adapt to the weather conditions, thus we have determined a plant number range in the case of each hybrid. The hybrids were classified into categories of producible in narrow and broad plant number range.

  • Effects of combined nutrient supply treatments on some physiological parameters of autumn wheat
    241-251
    Views:
    137

    The Fleischmann Rudolf Research Institute in Kompolt is not only famous for plant breeding but the institute also surveys the effects of different nutrient supply methods since 1918. In 2017, we joined this research supported by EFOP 3.6.1 project. Our aim was to investigate photochemical processes – which is one of the most determinant in case of yield – of crops by in vivo field measurements. We measured the chlorophyll content of leaves using Minolta SPAD 502. We used miniPAM fluorometer to determine actual photochemical efficiency and non-photochemical quenching of PSII during natural light conditions and also to evaluate the pigment (chlorophylls and carotenoids) and water content of leaves we applied field spectrophotometer (ASD FieldSpecPro 3). We utilized these methods by various treatments (1. treatment with soil bacteria + head and base fertilizer; 2. treated by only head fertilizer; 3. treated by only base-fertilizer) in field experiment of autumn wheat (4.1–2.43–1.19 ha) in June, 2017. The difference between treatments was clearly detectable. In the case of the first treatment, physiological processes were more intense and the ripening occurred earlier. The obtained yield was the highest in the case of the area treated by soil bacterial. Based on the results, the first treatment can be recommended in practice.

  • Delay of flowering in orchards
    79-81
    Views:
    86

    The goal of my research was to find out how cooling sprays affect the onset of flowering and the microclimate int he fruit orchards.
    Frequent spraying (every 20 minutes) can keep the temperature of trees and buds lower.As a result the onset of flowering occured several
    days later in the sprayed trees. It was proven that cooling sprays are suitable for delaying the onset of flowering under the domestic climatic conditions. This procedure can significantly mitigate the risk of frost damage and can improve crop safety.