Show Advanced search options Hide Advanced search options
Microbiological quality of bulk tank raw milk from two dairy farms in Hajdú-Bihar County, Hungary
Published December 28, 2018

Two main channels have been identified to be responsible for microbiological contamination of raw milk and milk products. Firstly, contamination has occurred due to udder infection from the cow or the blood which harbours most bacteria that come in contact with the raw milk. Secondly, via external factors (may include faeces, skin, contaminated... water, environment etc.) which are associated with the operation of milking. There is direct contact with the milk and/or surfaces before, during or after the milking, posing public health risk and economic decline. The aim of this study was to examine the bacteriological quality of bulk tank raw milk samples collected from two different size dairy farms (Farm 1 and Farm 2) of different housing forms (cubicle loose and deep litter) in Hajdú-Bihar County, Hungary in July, 2017. Three samples were taken from each farm, and the total plate count, coliform count, Escherichia coli count, Staphylococcus aureus count, and yeast and mould count were determined in them.

The results clearly showed low level of all measured bacteria group load in Farm 1 samples in comparison to Farm 2 with the exception of coagulase-negative Staphylococcus (CNS) which represented high level in general, indicating significant difference (P<0.05). The mean value of total plate count in Farm 2 samples was higher (1.0 × 105 CFU/mL) than Farm 1 samples (2.8 × 104 CFU/mL). There was a significant difference (P<0.05) in mean count of coliforms in raw milk samples between Farm 1 and Farm 2. Similarly, results of E. coli were significantly different (P<0.05) with mean count of 1.44 × 102 CFU/mL and 2.02 × 103 CFU/mL for Farm 1 and Farm 2 respectively.

Results of Staphylococcus aureus also showed significant difference (P<0.05) with mean count of 9.7 × 101 CFU/mL for Farm 1 and 6.28 × 102 CFU/mL for Farm 2. The mean of mould count recorded was 1.07 × 102 CFU/mL and 4.93 × 102 CFU/mL for Farm 1 and Farm 2 respectively. The recorded mean of yeast count was 1.68 × 103 CFU/mL and 3.41 × 103 CFU/mL for Farm 1 and Farm 2 respectively; however, both farms showed no significant difference (P>0.05) in terms of mean of mould and yeast count. Although Farm 2 produced six times lower milk quantity than Farm 1, the measured microbial parameters were high. Both farms’ microbiological numbers were higher above the permitted limit values as stated by Regulation (EC) No 853/2004, Hungarian Ministry of Health (MoH) 4/1998 (XI. 11.).

This could be an indication of non-conformance to effective GMP, ineffective pre–milking disinfection or udder preparation, poor handling and storage practice, time and temperature abuse and inadequate Food Safety Management System Implementation. Therefore, our recommendation is as follows; establish control measures for pre- and postharvest activities involved in the milking process which would be an effective approach to reduce contamination of the raw milk by pathogenic microorganisms from these farms, strict sanitation regime and hygiene protocol be employed and applied to cows, all equipment, contact surfaces and minimize handling of the milk prior, during and after milking. This will also serve as scientific information to the producers for continual improvement in their operations.

Show full abstract
The effect of breed and stage of lactation on the microbiological status of raw milk
Published May 23, 2019

The microbiological quality of the milk is important not only for food safety, but it can also influence the quality of dairy products. The microbiological status of raw cow milk can be influenced by many factors. Our aim was to determine whether there was a difference between the microbiological quality of milk of two different cow breeds (Hol...stein Friesian and Jersey) kept and milked in the same conditions, and how the microbiological quality of the raw cow milk changed during lactation (beginning, mid, and end). Samples were taken and analysed in July, August and September in 2018 from two dairy farms in Hajdú-Bihar county. During the conducted studies, the total plate count (TPC), the coliform count, the Staphylococcus aureus count and the coagulase-negative Staphylococcus (CNS) count of raw milk samples were determined.

There was no significant difference (P>0.05) between the milk of the Holstein Friesian and Jersey breeds in the case of TPC. However, the mean coliform count of milk samples taken from Holstein Friesian cows was significantly lower (P<0.05) than the mean coliform count of milk samples taken from Jersey cows. S. aureus was detected in one of the twelve milk samples taken from Holstein Friesian cows, and in two of the eleven milk samples taken from Jersey cows. CNS was found in larger amount in milk samples taken from Holstein Friesian cows, and the difference was significant (P<0.05). Both TPC and CNS count were significantly higher (P<0.05) in individual milk samples taken at the end stage of lactation, than in samples taken in the earlier stages of lactation from Farm “A”. However, in the case of Farm “B”, there was no significant difference (P>0.05) in colony counts at different stages of lactation. S. aureus was only present in milk samples that collected from cows, which were at the beginning and middle stages of lactation. Testimg the hemolysin production ability of S. aureus strains isolated from the raw milk samples, only weak hemolysis was observed on blood agar. In case of antibiotic resistance testing, it was found that all strains were susceptible to cefoxitin, chloramphenicol, clindamycin, erythromycin, gentamicin, penicillin G, tetracycline and trimethoprim/sulphamethoxazole.

Based on the results of our studies, staphylococci were detected in a higher amount in the milk of Holstein Friesian cows, and coliform bacteria were detected in a higher number in the milk of Jersey cows. Summing up the results of the milk samples taken from the different stages of lactation in one of the farms, it can be concluded that higher TPC and CNS count could be detected at the end stage of lactation than in the samples taken from the earlier stages of lactation. The fact that at the end of lactation the microorganisms could be detected in a higher colony count may be related to the fact that teats could be damaged during lactation by the milking machine, which increased the chance of imvading the microorganisms into the udder.

Show full abstract
1 - 2 of 2 items