Search

Risk effects of the spread route of mycotoxins
90-95

In Hungary the mycotoxin is a great problem, because there are many natural toxins in wheat and maize. These cereals can be found on
considerable proportion of the country’s sowing area, and they are deterministic food for the population. The direct human and animal
utilization of the contaminated cereals mean a serious risk in the food chain. In Hungary’s climate the soil is contaminated with pathogen
moulds, particularly Fusarium species, which increase by respective temperature and moisture content in cereals. The Fusarium can
decrease the quality of the wheat in different ways: decrease the germination capability and cause visible discoloration and appearance of
mould, reduces the dry material and nutrient content of the grain. From the toxins produced by the Fusarium genus, the trichotecene (T-2,
HT-2, deoxinivalenol, nivalenol, diacetoxyscxirpenol, Fusarenon-X) and the estrogenic zearalenon (F-2) are the most common in Hungary.
The fumonisins (FB1, FB2, FB3) first identified in 1988, relatively newly discovered, are also important. Major proportion of mycotoxins in a
healthy organization is metabolized by the enzyme system of liver and intestinal bacteria. The toxicity is reduced or even leaves off.
However, more toxic and biologically active compounds can be formed. For the reduction of mycotoxin-contamination several possibilities
are available in the case of storage, processing and feeding.

68
92
The effect of apoplastic pH on the nutrient uptake
65-71

The pH of soil and rhizosphare –around the roots- determine the mobility and solubility of nutrients. The exudates organic acids of plant able to modify the pH, as well as the microorganisms also take part in mobilization of nutrients. The nutrient solve mostly in mildly acidic and neutral pH. The either assumption of utilization of nutrients is the uptake by roots and of course uptake to the cells to take part in metabolism. The pH of apoplast fluid determines the solubility and uptake of nutrients to the cells.
The aim of this study was to examine the effect of nutrient solution and apoplastic pH together with a bacteria based biofertiliser (Phylazonit MC®) on nutrient uptake and pH of apoplast fluid in case of nutrient solution grown plants in laboratory experiment. According to my results, the bicarbonate increased the pH of nutrient solution in due to influence the solubility and uptake of nutrients. The given bicarbonate to the nutrient solution and infiltrated into the apoplazma also modified the pH of the apoplast fluid of the test plants. The effect of bicarbonate and biofertilizer were different on the pH of the apoplast fluid and nutrient solution in nutrient solution experiment. 

80
132
The effect of wet compost extract on the root tubers of green pea
51-54

Nitrogen plays significant role in the life of plants, it could be the main limiting factor of plant growth. Sustainable plant nutrition pays attention to satisfy the plants’ nutrient demand without chemical fertilizers, e.g. by bounding the atmospheric nitrogen. The nitrogen fixing organizations play important role in supplying plants with nitrogenbecause the N2-fixingbacteria can fix high amounts of nitrogen.
Many effects of the sewage sludge compost extracts is known in the literature. We studied the effect of sewage sludge compost water extract in laboratory conditions on the growth of Rhizobium spp. isolated from green pea, while in a small plot experiment thepea-Rhizobium symbiosis were studied on sandy soil in the Nyírség region. The extract was produced under aerobic conditions. The compost extract was applied before and/or after sowing. In the laboratory experiments we used the sterile version of extract, in different doses.
In our work we present the effect of compost water extract on the number of green pea roots nodules, dry weight of the plant and reproduction of the Rhizobium bacteria.

117
155
<< < 1 2