Search
Search Results
-
Anti-Oxidants in Agriculture
195-200Views:199Today’s programmes aiming at enhancement of fruit and vegetable consumption have been intensified. In the unanimous view of experts, different health problems, such as those of the immune system, inflammations, and even certain cancerous diseases can be prevented and/or cured with regular consumption of fresh (raw) fruit and vegetables. It is well-known fact that among the biologically valuable components, antioxidant compounds – C- and E vitamins, as well as carotinoides – play an important role. In this field, Hungary can expect success in the future since it has excellent plant genetic stock. Regretfully, national data banks regarding cultivation technology, cultivation areas or varieties for fruits and vegetables and their antioxidant contents do not exist in Hungary. Nevertheless, in connection with the so-called “Hungaricums” its existence would be of urgent necessity. Such excellent Hungarian products are – among others – a lot of sour cherry varietiles, the Szeged green pepper and the Makó onion. They enjoy high priority as “Hungaricums” even in the European Union and such activities that support these kinds of products should be enhanced by intense and consequent research work, which may prove their role as functional foods. Presently’ the USA leads in the research of antioxidant compounds of sour cherry, and so far 17 of these compounds have been found partly in Hungarian varieties. Similar research on green, and ‘pritamin’ peppers have not gone so far since they were limited only for seasoning paprika. In Hungary, studies on onion and garlic have not been performed. It should be mentioned that due to the continental climate, these products may be cultivated, consumed or processed only in a limited period. Taking this into consideration, processing and conserving methods are needed which make the consumption of these fruit and vegetables as functional food possible year-round. Scientific establishment of this set of questions is of current concern, because consumption of these products could have an important role in improving the health status of the Hungarian population in the future.
-
Occurrence of woolly cupgrass (Eriochloa villosa /Thunb./ Kunth) in Hajdú-Bihar county, Hungary
119-123Views:160Woolly cupgrass (Eriochloa villosa /Thunb./ Kunth) is native to East Asia, it spreads in several parts of the World and causes difficulties in plant protection, especially in maize. Difficulties in control of Eriochloa villosa originated from several reasons: seeds continue to germinate later in the season, significant part of seeds emerges from a deep layer of the soil, and the species is less susceptible to some herbicides applied to maize than other annual grass weeds.
The first report on the occurrence of woolly cupgrass in Hungary was published in 2008, and it reported about the appearance of this species near to Gesztely village (Borsod-Abaúj-Zemplén county), however, no information has been added about spread of the weed in Hungary until now.
A significant population was discovered next to Debrecen (Hajdú-Bihar county) in summer, 2011, and then weed associations were examined in maize, sunflower and stubble-fields on several km2 in the area to estimate the Eriochloa villosa infection. The weed species was found on every maize field bordering with a ground cover of 0.5-4%. Woolly cupgrass occurred inside of the 50% of maize fields, and reached a ground cover of 76% in case of most infected area, in addition it was found in sunflower and stubble-fields.
The spread of woolly cupgrass is expected in this area, which requires the consideration of this species in the planning of weed management technologies. -
Bioenergy production: are the objects realistic??
53-58Views:163Currently we do not have the possibility to define our energy reserves, since we do not know the magnitude of extant material resources. The known petroleum (crude) supply will be sufficient for about 100 years at the longest, and according to the latest estimates in 2008 we will reach and even exceed the maximum level of oil extraction, and after this it is going to decrease.
Hungary has good givens to go upon the way of sustainable energy economy according to experts, however a coherent government policy that lasts for not just one period is essential, and a sound economic- and agricultural policy is needed as well. According to the FVM’s under-secretary in Hungary more than 1 million hectares can be disposable for energy crop production. This would mean that 20 percent of the fields would be taken away from food production and on these fields energy crops would be grown. But we also have to take into consideration that the increase in energy plant production could happen at the expense of food production. If we would like to ensure the food for Hungary’s population from national sources we have to make calculations in determining energy need. In my research I set out the objective to determine the level of that specific turnover and marginal cost which supports the profitability of grain cultivation. With these indicators it is possible to analyze the economy and competitiveness of growing energy crops in the region of the North Plain. The alternatives of using cereals and rational land use should be also considered. A developing bio-fuel program can be a solution for the deduction of excess grain that is typical in Hungary for several years in the cereals sector. The pressure on the national market caused by excess grain can be ceased or moderated, and therefore the storage problems would decrease as well. -
The dynamics of biodiversity structure of soil microorganisms under the impact of biopreparations during potato growing season
67-74Views:229The use of biological preparations such as Phytotsid and Planryz contributes the increase of the general number of soil bacteria population by 13.0–36.1% in the case of potato variety Scarbnytsya and by 4.5–24.6% for potato variety Oberig compared with control. It also increases the number of saprophyte microflora, which compete with plant pathogens, micromycetes, and causes 1.2–1.8 times reduction in the number of soil fungi – Fusarium and Alternaria. During the application of Rovral Akvaflo the Shannon ecological index of species biodiversity is lower than during the biopreparation use. The decrease of species biodiversity was observed as well as strengthening the dominance of some species (dark pigmentation in fungi).
-
The effects of drought stress on soybean (Glycine max (L.) Merr.) growth, physiology and quality – Review
19-24Views:354Abiotic stresses are one of the most limiting factors inhibit plant's growth, leading to a serious production loss. Drought stress is one of the most destructive abiotic stresses and is still increasing year after year resulting in serious yield losses in many regions of the world,
consequently, affecting world’s food security for the increasing world population. Soybean is an important grain legume. It is one of the five major crops in the world, an essential source of oil, protein, macronutrients and minerals, and it is known as the main source of plant oil and protein. Harvested area of soybean is increasing globally year after year. However, soybean is the highest drought stress sensitive crop, the water deficit influences the physiology, production and seed composition of this crop. We introduce a review for literatures concerning the changes of the above traits of soybean exposed to drought stress, with past explanations for these changes. -
Desert greens: Unveiling the antioxidant power and health benefits of Qatar's locally grown leafy vegetables
11-17Views:524The long-term consumption of diets rich in plant polyphenols has a high potential to reduce the risk of chronic diseases such as cancer, cardiovascular disease, and diabetes. This study focuses on the phenolic and antioxidant properties of eight green leafy vegetables, red spinach, green spinach, water spinach, chives, rocca, Swiss chard, jute mallow, and purslane, commonly cultivated in Qatar. Antioxidant capacity (AC) was assessed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging method. The total phenolic content (TPC) of the samples was quantified using the Folin-Ciocalteu assay. Among all the vegetables, results indicated significant differences among all examined values at level of 5% Jute Mallow exhibited the highest phenolic content at 205.39±11.50 mg GA/100g, followed by Green Spinach at 189.58±10.56 mg GA/100g and Red Spinach at 185.15±2.93 mg GA/100g. Swiss chard exhibited the highest antioxidant activity of 89.26%. This study provides valuable data on these vegetables to positively affect the health and well-being of the population. Intensifying further future investigation to embrace a wider phytochemical profile (e.g., flavonoids, carotenoids, vitamin C), varied antioxidant assays (e.g., FRAP, ABTS), and bioavailability tests would expand the understanding of the studied leafy vegetables health benefits.
-
Leaf protein analyses in order to utilise the leaf shoot of artichoke
43-47Views:254The constat growth of the Earth’s population brings with itself a higher demand for food and protein not only in human nutrition but also for the feeding of livestock. Currently, the feed industry is mainly built onseed-based protein, wherethebaseplant is soybean, which is large lycovered by imports in Hungary, similar toother European countries. However, the long-term economically sustainable lifestock breeding demandschanges which has also worked out strategies. An alternative protein sources could be green leafy plants.
In current work the Jerusalem artichokes as an alternative source of protein was studied, compared to alfalfa as a valuable protein plant. Our results indicate that fiber fraction ofJerusalem artichoke shootswas 34 to 37% after pressing in the autumn period while alfalfa slightly lower values were obtained (30%). On the other hand extracted green leaf protein concentration was higher in alfalfa than in Jerusalem artichoke. Along with this higher protein content could be measured from the leaf protein concentration of alfalfa and almost each amino acids were more, as well comparing to Jerusalem artichoke.
Overall, the alfalfa proved to be advantageous as expected both in leaf protein extraction efficiency, both regarding the content of the protein in the Jerusalem artichoke. However, considering aminoacid composition and green biomass production, Jerusalem artichokecould be a promisingplant species asplant protein sourceinthefuture.