Search
Search Results
-
The effect of plant density on maize yield in average and extremely dry years
7-16Views:114The yield safety of maize has not been satisfactory in Hungary for decades. Yield is influenced by the combination of several factors.
In recent years, the frequency of dry years increased and fertilization decreased. These factors call for a rational determination of the plant density.
I studied the relationship between plant density and yield in 2003-2004 and 2007 on meadow soil.
In 2003, the weather was dry. In the vegetation period, the amount of precipitation was 78.5 mm lower and the temperature was 0.97 °C higher than the average of 30 years, the number of hot days was 47-60 (days with a temperature higher than 30 °C). However, we obtained favourable results under experimental conditions in 2003 after wheat as a forecrop using the fertilizer Kemira Power.
The weather in 2004 was favourable. In the vegetation period, the amount of precipitation was 93.2 mm higher than the average of 30 years. Although, the distribution of the precipitation could have been more favourable. The yield of the hybrids ranged between 8.87-10.42 t/ha. Among the studied seven hybrids, the early hybrids gave the highest yield at the highest plant density of 90 thousand plants/ha (PR38Y09, PR38A67, PR37D25, PR37M34). However, FAO 400-500 hybrids gave favourable results also at the low plant density of 45 thousand plants/ha (8-9 t/ha). At this plant density, the aeration of the plant stock was better and the hybrids were prone to bringing several cobs. Yield stagnated with increasing plant density (60 thousand plants/ha), then at 75-90 thousand plants per ha, the yield started to increase again.
In 2004 the yield of hybrids was considerably higher than in the previous year. In contrast to yields of 8.87-10.42 t/ha in 2003, yields in 2004 were around 9-12 t/ha.
The yield of the hybrid XO 902 P is above 12 t/ha already at a plant density of 45 thousand plants/ha. It gives maximum yield at the plant density of 90 thousand plants/ha.
The hybrid PR38P92 showed a good response to changing plant density, but its yield was only 9 t/ha at the low plant density value.
In a favourable year, the yield of the hybrids PR38B85, PR37W05, PR37D25, PR37K85 at a plant density of 45 thousand plants/ha 11 t/ha, while at the higher plant density of 90 thousand plants/ha, it ranges around 13-15 t/ha.Hybrids PR36K20, PR35Y54, PR34H31 have a good individual yield and they are prone to bringing several cobs in favourable years at a low plant density. Their maximum yield at the plant density of 90 thousand plants/ha is almost 16 t/ha.
In 2007, the weather was similar to that of the extremely dry year of 2003. The amount of precipitation in the vegetation period was 41.9 mm lower than the average of 30 years and its distribution was not favourable either.
In the optimum NPK fertilizer treatment at an optimum plant density, the yield of hybrids ranged between 9.32-10.73 t/ha. The highest yields of 10.22-10.73 t/ha were measured for hybrids PR38A79 (FAO 300) and PR35F73 at a relatively low plant density of 60 thousand plants/ha.
In the average of the hybrids, the optimum NPK dosage was N 131, P2O5 82, K2O 93 kg/ha active ingredient. -
The effect of the plant density for the yield of the maize hybrids
50-61Views:111In order to enchance the yield stability of maize, the effect of plant density on yields was studied on a typical meadow soil in Hajdúböszörmény between 2002-2004. In the plant density experiment, we used the method of Béla Győrffy. The plant densities applied therefore 20 to 100 thousand plants/ha by ten thousand scale. The application of fertilizer rates for the maize hibrids in every year were N: 110 P: 90 K: 120 kg/ha. We used a manual soiling-gun in the experiment. In every year we used plant protection techniques against monocotyledonous and dicotyledonous weeds. The harvest was done by hand. The facts were read by variancie analysis and linear regression analysis. The moisture and the temperatures were extreme in 2002, 2003, 2004. We have to mention defficiery of moisture in 2003 which is shown that the hot days number increased. After evaluating our findings we can conclude that most hybrids showed a significant correlation between increased plant density and the volume of yields. On the basis of the experiments we divided the hybrids into four groups: the first group included the hybrids suitable for increased plant density with a wide range of optimal density values; the second group included hybrids, which did not require high plant density, were capable of good individual performance and tended to grow several ears; the third group included flexible corn types, which grew longer ears in favourable years, thus yielded more; and the fourth group included the hybrids, which were sensitive to increased plant density and which showed a narrow range of optimal density values. Finally, plant density determines the yield; we have to consider optimal plant density intervals as well as optimal plant density, and we also have to place a high emphasis on the use of hybrid-specific technologies.
-
The Effect of Plant Density on the Yield of Sunflower Hybrid’s in 2001-2002
184-189Views:121Nowadays, for increasing efficiency of sunflower production treating hybrid-specific technologies was required. Increasing of hybrid choice gave reasons for trials in respects of critical factors, as well as in case of genotype-enviroment interactions. The effect of changing plant density show up as determinant factor which affects on yield as well as on plant hygienic conditions. Trials were established on calcareous chernozem soil (Hajdú-Bihar county), in 2001-2002. The field trials were randomized, in four repetition on small parcels. The plant density trials were established in 35.000-75.000 plant/hectar interval using a scale of 10.000 plant/hectar. 10 hybrids were used in both year.
In 2001, 55.000 plant/hectar density was the optimal, in case of most of the hybrids. The yield of tested hybrids did not show significant difference. Yield decreasing effect of using less than optimal density was more significant than in case of using optimal plant density. In 2002, the optimal density was in 45.000-65.000 plant/hectar interval, there was no possibility to find narrower optimum.
Presence of Diaporthe helianthi and the damage caused by the pathogen was significant in 1997-1999, whereas in 2001-2002 the large-scale appearance of the pathogen did not occur. In 2001, the affect of high plant density on disease caused by Diaporthe helianthi showed just tendency-like appearance, in 2002, the infection showed up just in the end of the vegetation period, without significant damage. In spite of the low infection level, the difference between the infection of the diverse plant density treatment was significant. Increasing plant density made increase the frequency of the Diaporthe helianthi infection. The rate of the flower diseases was around 3-16% in 2001, the highest infection level emerged in 65.000-75.000 plant/hectar density, whereas in 2002, the rate of infection level was less than 10%. The increasing plant density helped the development of flower diseases. -
Evaluation of reaction to plant density of sunflower hybrids by regression and Kang’s stability analysis
101-109Views:116The world production area and the total production of sunflower has significantly been growing. The harvested yield was 23.4 and 21.1 million ha in 2005 and 2001, respectively. The total sunflower seed production has also unexpectedly increased.
Although sunflower is produced on lower quality soils in Hungary, in 2005 the average harvested yield was 2.43 t ha-1, which was the highest in the world.
Sunflower is a typical commercial plant and fits well in the crop structure. Since in terms of acreage the most significant crops are corn and cereals, the partial monoculture cultivation cannot be avoided. Sunflower production is a way to eliminate this problem, therefore it has an important role both in cultivation and ecological points of view.
Accordingly, sunflower has an important role in reducing the monoculture cultivation of some plants, as well as increasing biodiversity. Sunflower well adapts to Hungary’s climatic conditions and its production is easily practicable in our country.
The reaction of sunflower hybrids on crop density change is different. Some hybrids are more some are less sensitive to this parameter. In different crop years, the crop density optimums of the different genotypes are also different. In Hungary, the yield and quality is primarily determined by fungal infections, while viruses and bacteria are less important.
The research was conducted at the Látókép farm and Regional Research Institute of the University of Debrecen, Centre of Agricultural Sciences. The research institute is situated by Road 33,15 km from Debrecen in the Hajdúság. The duration of the experiment was seven years, 10 hybrids were examined in each year.
Two hybrids used every year, Aréna/PR and Alexandra/PR hybrids were tested by Kang’s stability analysis. We found that Alexandra/PR was most balanced at every levels of crop density. Both hybrids performed most stable yield at 65000 ha-1 crop density level and less balanced at 35000 ha-1 crop density level. As a result of improved environmental conditions, the yield increase of Aréna/PR was higher than that of Alexandra/PR.
Our regression analysis found that the maximum yield of Lympil, Louidor, Hysun 321, PR63A82 and PR64A63 hybrids were harvested at 47000-60000 plant ha-1 crop density level. The statistical analysis showed that the highest yield was harvested from Lympil and Hysun 321. As regards the crop yield, the most stable hybrids were Louidor and Lympil. The optimum crop density interval of Rigasol/PR and Larisol (58000 plant ha-1) was wider than that of Diabolo (46000 plant ha-1). The maximum yield of Larisol was higher at the optimal crop density level. As regards yield, Diabol was the most stable hybrid.
The statistical analysis on the stability of the yield of Alexandra/PR and Aréna/PR showed that Aréna/PR is more stable, and its optimal crop density level is lower than that of Alexandra/PR. -
Site and hybrid-specific agrotechnical models in sweet corn production
105-108Views:105The effect of three agrotechnical factors (sowing time, fertilization, plant density) and two genotypes on the crop yield of sweet corn was examined on chernozem soil in the Hajdúság region in two different crop years. Compared to the 30-year average, the climate was dry and warm in 2009 and humid in 2010. The experiments were conducted at the Látókép Research Site of the University of Debrecen. In the experiments we applied two sowing times (end of April, end of May), six fertilization levels (control, N30+PK, N60+PK, N90+PK, N120+PK, N150+PK) and two crop density levels (45 thousand ha-1, 65 thousand ha-1). The hybrids we used were Jumbo and Enterprise. As regards the requirements of sweet corn production, the crop year of 2009 was dry and warm. The effect of moisture deficiency was more adverse on the crop yields with the second sowing time. On the contrary, the other examined year (2010) was significantly humid; the precipitation was 184 mm above the 30-year average and the temperature was average.
In the dry and hot crop year, the best yields were obtained with the hybrid Jumbo (25677 kg-1) at 65 thousand ha-1 plant density level on the average of the fertilization levels. The crop yields of Enterprise were also the highest at high plant density level (24444 kg ha-1). With the second sowing time the highest yields were obtained at the higher plant density level (65 thousand ha-1) with both hybrids (Jumbo 18978 kg ha-1, Enterprise 18991 kg ha-1), which confirmed the good adaptation capability of these hybrids at high plant density level. In humid crop year with early sowing time the highest yielding hybrid was Enterprise (at 45 thousand ha-1 crop density level 20757 kg-1), at the same time, Jumbo was best yielding at the higher plant density level (18781 kg-1). With the second sowing time the highest crop yield was obtained with Enterprise again (20628 kg ha-1 at 65 thousand ha-1 plant density level). With this sowing time the average yields of Jumbo, was 18914 kg ha-1 respectively. We found that dry crop year and early sowing time provided the best conditions for sweet corn production; the highest yields were obtained under these circumstances, which might be the results of the outstanding water management of chernozem soils. -
The effect of plant density to the yield results and the yield components of maize hybrids
89-93Views:150Maize is the crop that is produced on the second largest area in our country, in Hungary. It is planted on nearly 25% of the country’s growing area and it was produced on 1 090 439 hectares in 2016. Despite the continuous development of the biological basis and production
technology, the growth of the yield results is not constant, its fluctuation is significant. It can be even up to 60%, because of the extremity of the years. The exploitation of the yield potential of modern hybrids is possible if we harmonize the effects of the ecological factors and properly applied instruments of agro technology and by these we ensure their interaction to reach a favorable outcome. The applied plant density is an important, well researched, but at industrial level a not enough utilized element of the maize production.
The results of the extensive tests, done between 2009 and 2015, showed that the genotype, the year effect and the plant density are in strong correlation with each other determining the yield results. In the past seven years the examined genotypes reached the highest yield
performance at the highest plant densities. The early hybrids (RM90–95, FAO 200–300) are capable of producing them at higher plant density, while in case of the mid and late maturity varieties the further increasing of the density after reaching the optimum level led to yield depression.
According to our experimental results, the yield is in close positive correlation with the increase of the plant density. The effect of the growing season has great significance in forming the yield results and this determines the applicable plant density too.
The yield of maize is determined by a resultant of components. The main component is the number of ears per plant and the amount of kernels per ear, which is calculated from the number of kernels on an ear and the weight of them. The number of the kernels on an ear is
calculated from the number of rows on the cob multiplied by the number of seeds in one row on the cob. In dry years, at lower yield levels the yield decreases because of the shorter ears, while at the higher levels the number of kernels in a row and the thousand-kernel weight decreases,causing yield depression this way. From our examinations it turned out that the plant density reaction of a genotype is individual, every variety reaches its maximum kernel number per hectare – in other words the maximum yield - in an individual way. -
The effect of crop protection and agrotechnical factors on sunflower in the Hajdúság region
39-46Views:97Extreme weather conditions are becoming more and more frequent in the crop years, thus increase the risk of sunflower production.
The objective of researches into plant production is to minimize these effects as much as possible. In this sense, the optimization of
agrotechnological factors is of high importance. Within these factors, the appropriate crop technology (sowing time, crop density)
and optimized, rational crop protection technologies are important, especially in the highly sensitive sunflower cultures. The effect of
sowing time, crop density, and fungicide treatments on the yield of sunflower hybrids was analysed in different crop years in 2008
and 2009. In each case, the infection was highest with the early sowing time and at the highest crop density level (65000 ha-1). When
one fungicide treatment was applied, the rate of infection decreased compared to the control treatment. The further decrease of the
infection rate was less after the second fungicide treatment.
In the humid year of 2008 the crop yield was the highest at 45000 ha-1 crop density level in the control treatment and at 55000 crop
ha-1 crop density level when fungicides were applied. In the draughty year of 2009 the maximum yield was gained at 55000 ha-1 crop
density level in the control treatment and at 65000 crop ha-1 when fungicides were applied. In 2008 and 2009 as regards the crop
yield, the difference between the optimal and minimal crop density levels was higher in the fungicide treatments than in the control
treatment (in 2008: control: 517 kg ha-1; one application of fungicides: 865 kg ha-1; two applications of fungicides: 842 kg ha-1), (in
2009: control: 577 kg ha-1; one application of fungicides: 761 kg ha-1; two applications of fungicides: 905 kg ha-1).
In each and every case, the first treatment with fungicides was more effective than the second. In 2008, the highest yield was
obtained with the third, late sowing time in each fungicide treatment. The differences between the crop yields with different sowing
times was less than in 2009, when the results of the second treatment exceeded those of the first and third treatment in each case. -
Effect of the plant density on different maize (Zea mays L.) hybrids yields and leaf area index (LAI) values
51-56Views:160We have investigated the plant number reactions of three maize hybrids of various genotypes in a small-plot field experiment. The plant numbers were 50, 70 and 90 thousand ha-1, while the row distances were 45 and 76 cm. The experiment was set on the Látókép Experimental Farm of Centre for Agricultural Sciences of the University of Debrecen in four replications on calcareous chernozem soil.
The assimilation area and the leaf area index have important role in development of the crop yield. The studied three different genotype maize hybrids reached its maximum leaf area index at flowering. The maximum leaf area index increased linearly with increasing plant density. The season-hybrids reached less yield and leaf area index. According to our experimental results, we have concluded that with the decrease of the row spacing, the yield increased in the average of the hybrids. The studied hybrids reached the maximum yield at 70 and 90 plants ha-1 plant density. We determined the optimal plant number that is the most favourable for the certain hybrid under the given conditions.The higher plant density was favourable at 45 cm row spacing than 76 cm. The hybrids reached the maximum grain yield at 45 cm row spacing between 76 712–84 938 plants ha-1, while the optimum plant density at 76 cm row spacing changed between 61 875–65 876 plants ha-1.
The leaf area index values between the applied plant density for the flowering period (July 1, 24), we defined a significant differences. In the archived yields were significant differences at the 45 cm row spacing between 50 and 70, 90 thousand ha-1 plant density, while the number for the 76 cm row spacing used did not cause a significant differences in the yield. There were significant differences between the examined hybrids of yields.
-
Test of the Plant Density Reaction of Genotype Sunflower Hybrids
113-119Views:159In order to produce sunflower in Hungary today it is important to develop hybrid-specific cropping technologies. The ever widening number of hybrids makes the constant examination of genotypes necessary from the viewpoint of genotype-environment interactions and critical elements. Plant density as a complex factor puts strain on the pathological features, yield and quality of sunflower. The experiment’s main objective is to find the optimal plant density for both the genotype and external factors.
As a result it can be stated that the optimal crop density is between 45,000-75,000 plant/ha. In 2001 the optimal density was 55,000 plant/ha. The Aréna PR and the Alexandra PR hybrids produced the greatest yields (3511 kgha-1; 3338 kgha-1). In the growing season of 2002, the yields were higher than in the previous year and the optimal crop density was 45,000-65,000 plant/ha. The best yields were produced by the Aréna PR and Alexandra PR hybrids in this year again (4102 kgha-1; 4267 kgha-1) and in 2003, 45,000-65,000 plant/ha proved to be the best crop density. The highest yield was produced by the Alexandra PR.
Analyzing the growing seasons of 2001, 2002 and 2003 it can be declared that as a result of dry climate of the three years yields were higher. It can be stated that the yield is decreased by higher than average of precipitation in the growing season. -
The Effect of Sowing Time and Plant Density on the Yield of MaizeHybrids
95-104Views:97The crop technology of maize has two important elements, sowing time and plant density. In 2003 and 2004 we studied the effect of these two factors on the growth and production of maize in an experiment carried out near Hajdúböszörmény.
The soil of the experimental plots was meadow soil.
Weather in both years was differed greatly. 2003 was drought. Neither the distribution nor the quantity of the precipitation were suitable in the growing season for maize. This fact basically determined the results.
In 2004, we could talk about a favorable and rainy season. The distribution and quantity of precipitation was suitable between April and September. The average temperature was also suitable for maize.
Results of the sowing time experiment:
In 2003, we tested seven hybrids at four sowing times. Hybrids in the early maturity group gave the highest yield at the later sowing time, while the hybrids of the long maturity group gave it at the earlier planting time. The yield of PR34B97, PR36N70, PR36M53 hybrids was the best at every planting time. The moisture loss of hybrids in the late maturity group was faster in the maturity season, but the seed moisture content was higher than the hybrids with early sowing time. The seed moisture content was very low due to the droughty year. In two hybrid cases, this value was higher than 20% only at the fourth sowing time.
In 2004, we examined the yield and seed moisture content of nine hybrids. In the favorable crop year, the yield of every hybrid was the highest at the second and third sowing time. Yields of PR34H31 and PR38B85 hybrids were significant. The seed moisture content at harvest was higher than the previous year due to the rainy season. In the case of hybrids sown later, this value was higher by 30%. However, we noticed that this value was lower at the earlier sowing time than at the later.
The crop year had a more dynamic effect on maize than the sowing time. First of all, the quantity and distribution of precipitation played an important role in respect to yield safety.
Results of the plant density experiment:
We tested the reaction of hybrids at four plant densities (45,000, 60,000, 75,000 and 90,000 stock/ha) every two years. In 2003, the tested seven hybrids reached the highest yield at the 90,000 stock/ha in the face of a droughty year. The effect of forecrop and favorable nutrients caused these results. In the rainy 2004 year, the yield grew linear with the growing plant density. The yield of the best hybrids were 14-15 t/ha at the 90,000 stock/ha.
Such a high plant density (90,000 stock/ha) couldn’t adaptable in farm conditions in rainy season. It is practical to determine the interval of plant density besides the optimum plant density of hybrids which gave correct yield. The farmers have to use the low value of this interval due to the frequent of the droughty years. -
Effect of the crop-year on plant protection feature of sunflower
71-75Views:171Our study focused on plant density reactions of sunflower hybrids on chernozem soil in years with different levels of available water (2011 and 2012). We studied factors (i.e.infections, yield) that are most affected by the amount of precipitation.
However the amount of precipitation varied in 2011 (average amount of precipitation) and 2012 (drought), Sclerotinia and Diaporthe infections were significant in both years. Diaporthe was stronger in 2011 while in 2012 Sclerotinia infections were greater than average. Higher plant density provided for a favorable microclimate for pathogens meaning that increased stock density enabled enhanced infections. Maximum levels of infections in both the cases of Diaporthe and Sclerotinia were measured at a plant density level of 65 000 plants ha-1.
2012 yields (control: between 2 289 and 3 261 kg ha-1, two-time treated: between 2 699 and 3 659 kg ha-1) were significantly lower compared to the results of 2011 (control: between 2 825 and 3 672 kg ha-1, two-time treated: between 3 059 and 4 059 kg ha-1). Fungicide treatments led to an increased yield in both years: 9.5% in 2011 and a notable, 15.1% growth in 2012. We applied regression analysis to calculate optimum plant density for the examined years and treatments. Based on the calculations we found that in the cases of both treatments optimum plant density was 53 000 plants ha-1, while in 2012 the optimum was higher due to lower level of infections: 56 000 plants ha-1 in the control stock and 64 000 plants ha-1 in the stock treated twice.
-
Examination of the population density and sowing date of different maize genotypes in the Hajdúság region
111-115Views:137The experiment was carried out 6 km from Debrecen, next to the main road 47 on a homogeneous field on brown forest soil. Five corn hybrids were tested in the trial (DKC 4795, DKC 4995, KWS Kornelius, NK Cobalt, PR37 N01) at three different sowing times (early – 5th April, average – 21st April, late – 10th May). At each sowing time, three different plant densities were applied (modest – 58 500 plants ha-1, average –70 200 plants ha-1, high – 82 300 plants ha-1). The agrotechnics applied
in the experiment satisfied the requirements of modern corn cultivation.In the study, the best yield result was achieved with the early sowing time out of the three examined sowing times (11 315 kg ha-1), which was significantly different (LSD5%=495 kg) from that of the average sowing time (10 690 kg ha-1), however, there was no statistically justifiable difference between the yield results of the early and the late sowing times. There was a significant difference also between the average and late sowing time. Our results indicate that the different sowing times resulted in a different flowering times. Consequently, the stands of early and late sowing time reached this critical stadium of growth under proper climatic circumstances (precipitation: 39 mm and 136 mm, average temperature at flowering: 18.1 oC and 20.3 oC), while flowering in the case of the average sowing time of 21st April was in the first half of July and the average temperature at flowering was warmer (23.2 oC) with only 10 mm precipitation.
In the experiment, the plant density response was also examined. According to the measured data, four of the five hybrids responded badly to the increasing plant density. We found that the plant density of 58 500 plant ha-1 gave the largest yield results (DKC 4995 11 794 kg ha-1 – NK Cobalt 10 998 kg ha-1, average of five hybrids: 11 430 kg ha-1), while the lowest yields were obtained at the plant density of 82 300 plant ha-1 (KWS Kornelius 11 037 kg ha-1 – NK Cobalt 10 019 kg ha-1, average of five hybrids 10 720 kg ha-1). The difference between the two plant densities was significant (LSD5%=494 kg), however, the 70 200 plant ha-1 plant density did not show any statistical difference from neither the 58 500 ha-1 nor from the 82 300 plant ha-1 stands. When examining the data of the hybrids separately, we found that there was a significant difference between the average yield of the lowest and highest plant densities only in the case of three (DKC 4795, DKC 4995, NK
Cobalt) out of the five hybrids (DKC 4795: 11 757 kg ha-1 – 10 857 ha-1 where LSD5% =816 kg; DKC 4995: 11 794 kg ha-1 – 10 738 kg ha-1 where LSD5%=853kg; NK Cobalt: 10 998 kg ha-1 – 10 019 kg ha-1 where LSD5%=630 kg ha-1), while a significant difference between the second and third plant densities was observed only in one case (DKC 4995: 11 726 kg ha-1 – 10 738 ha-1 where LSD5%=853 kg). In all other cases, there was no statistical difference between the different
plant densities. -
The effect of irrigation on the yield and quality of maize (Zea mays L.) hybrids
143-147Views:186In this study, the effect of water supply on the quality and productivity of different maize hybrids was observed.
Maize production is influenced by many agro-technical factors such as nutrient supply, plant density, environmental factors, water supply and temperature. Good soil quality and adequate technology significantly reduce the unfavourable effect of crop year. The impact of fertilization, crop rotation, irrigation and plant density on maize yield was greatly affected by crop year and crop rotation. The main constituent (69–75% dry matter concentration) of maize seed is starch, however, its increase can be achieved only to a limited extent, as increasing the starch content will reduce other parameters, especially protein content. Significant nutrient content improvements can be achieved by appropriate hybrid-site connection and the use of adequate technology. Protein content reduction with optimal water supply can be positively influenced by the appropriate nutrient supply for the hybrid.
The experiments were carried out at the Látókép Experimental Site of Crop Production on calcareous chernozem soil. The weather of the examined year, which was partly favorable for maize and partly unfavourable in other respects, was also reflected in the development of maize and yields achieved.
In 2019, we were examining the hybrids of Kamaria (FAO 370), P 9903 (FAO 390), DKC 4351 (FAO 370) and KWS Kamparis (FAO 350–400). Due to the dry soil condition, sowing was delayed, however, the hybrids emerged ideally because rain arrived soon after sowing, which facilitated initial development. Young plants evolved rapidly and dynamically in the case of all hybrids. In terms of heat-demanding bread, the month of May was unfavourable to temperatures below the annual average, but the higher amount rainfall helped the development. However, due to the drier period in early July, 25–25 mm of irrigation water was applied to half of the experimental areas on July 1 and 15.
The aim of our research was to determine the best population density for hybrids under favourable soil conditions (calcareous chernozem soil). In both irrigated and dry conditions, a crop density of 75,000 crops were the most favourable for the Kamaria hybrid. The P9903 hybrid in the case of a crop density of 85 crops proved to be ideal and the DKC4351 had an optimal population density of 95,000.
However, it should be taken into consideration that, in the case of soils with poor water management, the drought sensitivity of the crop stand may increase at a population density of 95,000.
As a result of irrigation, yield increased and the difference between the examined plant numbers decreased. The yield growth was relatively moderate (341 kg ha-1 – 1053 kg ha-1), which makes the economicalness of irrigation doubtful in the given year.
-
Studying on the frost damage of some peach and nectarine varieties
13-15Views:131To be able to grow stone fruit species, the peach and the nectarine varieties, yield stability is very relevant. However, the climate is suitable in Hungary for growing stone fruits. We have to calculate with damage. Important winter damage and spring frost damage occur in every second year on the Great Pplains. To reveal the frost tolerance of cultivars and to clarify the differences among growing areas is the most important point of peach and nectarine production.
We, made our experiments in the winter of 2005 (January-February), at Pallag, Zsombó, Siófok, Sóskút and Szatymaz. These former places are determinant in peach and nectarine growing in Hungarian respects.
In our experiments we analyzed 10-10 fruit shoot from 82 varieties, and we measured the frost damage and the flower bud density.
The minimum and the maximum frost damage values (%) at the different growing places were 7.6-38.7 at Siófok, 6.5-31.3 at Sóskút, 34.3-100 at Szatymaz, 83.7-99.6 at Pallag and 51.9-99.6 at Zsombó. There were expressive differences between the same cultivars depending on the growing area.
The frost damage of „Suncrest” variety was 7.6% at Siófok, 8.2% at Sóskút but it was 69.8% at Szatymaz. The „Maystar” variety had 17.6% at Siófok, 12.4% at Sóskút and 87.2% frost damage at Szatymaz. In case of „Redhaven” variety the frost damage values were 16.8% at Sóskút, 54.6% at Szatymaz. We collected fruit shoots from three different heights in case of „Cresthaven” variety. In case of 1 meter height the frost damage was 74.6%, at 2 meter height 44.7%, and 25.2% at 3 meter.
We experienced also big differences in flower bud density (flower bud/10 cm) of varieties. The following cultivars had the highest flower bud density (6-7 bud/10 cm): „Suncrest”, „Meystar, „Maria Luisa” and the „Maria Bianca”, „Redhaven”, „Michellini” had the lowest flower bud density (2-3 bud/10 cm).
After our experiments we established that there were very expressive differences among the frost damage of peach and nectarine varieties from different climatic conditions and there are also big variance between the frost damage values of those fruit shoots, what were collected from different heights, but from the same variety. It conspicuous very good among our items, that difference of the flower bud density is very big among the varieties.To be able to grow peach and nectarine successfully, the suitable variety (low frost damage value, high flower bud density) and the suitable growing are is determinant. -
Complex appreciation of agrotechnikal factors of sweet corn (Zea Mays L. convar. saccharata Koern.)
77-81Views:130Three agrotechnical factors (sowing time, fertilization, plant density) and the effect of two different genotypes on the yields of sweet corn was studied, in the dry and warm crop-year of 2009 on a chernozem soil in the County of Hajdúság. The experiments were carried out on the Látókép Research Station of Debrecen University. The experiment involved two sowing times (21 of April and 19 of May), six fertilizer levels (control, N30+PK, N60+PK, N90+PK, N120+PK, N150+PK) and two genotypes (Jumbo, Enterprise). Four plant density levels, 45 thousand ha-1, 55 thousand ha-1, 65 thousand ha-1 and 75 thousand ha-1 were used. In the early sowing time the highest yield was obtained with 65 thousand ha-1 plant density level and N120+PK treatment of Jumbo (18169 kg ha-1), while the maximum yield of Enterprise was 17818 kg ha-1 with 75 thousand ha-1 plant density level and N90+PK dose. In case of the late sowing time both hybrids gave the highest yield with 75 thousand ha-1 plant density level and N30 +PK
treatment, with a crop yield of 13143 kg ha-1 (Jumbo) and 14324 kg ha-1, ( Enterprise). -
Examination of plant number and sowing date in different crop years
79-82Views:119We examinated three agrotechnical factors in 2011, 2012 and 2013 (sowing time, nutrient factor and plant density), as well as five different effects of genotypes on the crop of corn, on brown soil in the Hajdúság. The experiment was set next to the 47 main road in Debrecen, at the 6th kilometre stone.
In the present processing I would like to touch on the effects of sowing time and plant density, as I do not have the chance to present the whole experiment results here. It is true for all three years that the humidity factors differ from the long years’ average, so the genotypes had different reactions on it. According to our results we found out that the late sowing time’s result had the most successful crop yield result with 9975 kg ha-1, while examining the plant density the result of the highest plant density proved to be the best with 9967 kg ha-1.
We take the critical season in corns’ life cycle process into consideration when examining the results: June, July and August months’ humidity and temperature markers. According to the results in the tested 3 months we had 227 mm humidity with 10 days, when the average temperature was over 25 °C. The same factors in 2012 were 135.5 mm humidity with 37 days of average temperatures of 25 °C and in 2013 we recorded 102.5 mm humidity with 24 of these days.
Our goal is to help the farmers in the Hajdúság with the results of our sowing times, hybrid choice and plant density results.
-
The effect of plant density on the yield of sweet potato
125-128Views:468A field study was conducted in South-East Hungary during the main cropping season of 2016, 2017 and 2018, with the objective of determining the effect of plant spacing on the productivity of sweet potato. Production technology experiments of four repetitions were set up in a randomized block design on sandy soil. The performed treatments consisted of four variations of plant spacing (row distance x plant-to-plant distance): 80 cm x 20 cm, 80 cm x 30 cm, 100 cm x 20 cm, 100 cm x 30 cm. The plant material was the Hungarian registered sweet potato variety ‘Ásotthalmi-12’. Analysis of variance revealed that planting density significantly affected the average yield of storage roots. The highest yield per plant was achieved with the 100 cm x 30 cm (2016, 2017), as well as with the 80 cm x 30 cm (2018) setups. On hectare level, our results showed that the highest plant density of 62,500 plants ha-1 (80 cm x 20 cm setup) could give the highest yield. Comparing the highest tons ha-1 results to those achieved with the plant spacing setups resulting in the highest yield per plant, the differences can be even 13 or 14 tons at hectare level. This finding underlines the importance of choosing the proper planting density towards the higher end.
-
The comparison of sperm motility and density in four different goldfish (Carassius auratus) types
135-140Views:192Different goldfish types play an important role both in ornamental fish farming and science. Considering its historical background, the goldfish is a suitable model animal for the study of artificial selection as well as for developmental biological studies. Sperm motility and cell density is an important parameter in determining sperm quality. The aim of our study was to examine the effects of different goldfish types on the sperm quality. Several sperm motility parameters (progressive motility (pMOT, %), straight line velocity (VSL, μm s-1), curvilinear velocity (VCL, μm s-1), linearity (LIN, %), amplitude lateral Head Displacement (ALH, μm), Beat Cross Frequency (BCF, Hz)) of four different goldfish types (Common goldfish-“wild type” N=5, Shubunkin N=4, Black Moor N=4, Oranda N=5) was compared during 60 hours (at 12-hour intervals) at refrigerated storage (4 °C). The variability of sperm density was also investigated in all types. A similar cell concentration was determined in the four goldfish variants (Common goldfish 2.01*1010 ± 3.46*109; Shubunkin 1.71*1010 ± 3.25*109; Black Moor 1.66*1010 ± 3.02*109; Oranda 1.56*1010 ± 5.83*109). Statistically significant difference between the 4 goldfish types in the motility parameters and cell density was not noted. However, a decreasing tendency in Black Moor sperm motility parameters (pMOT, VCL and VSL) was observable, as well as a reduced spermatozoa density in Oranda was also recorded. Our results can contribute to the improvement of the common hatchery propagation of goldfish. Future studies can add more evidence of the possible effects of artificial selection on the reproduction in different goldfish types.
-
The effect of production area on the development of yield producing factors of maize (Zea mays L.) hybrids of different genotypes
67-72Views:147Maize yield amount development is determined by the given crop year and the genotype of the applied hybrid, but beside these also by the applied agrotechnical factors, in particular by sowing technology. The development of yield amount and yield producing factors of five maize hybrids of different genotypes has been studied in a small-plot field experiment by the application of different row spacings and plant density variants. The production of the individual plants shows decreasing tendency parallel to the increasing plant density, however, this decrement is compensated by the higher number of plants per unit production area. Individual plant production is determined by the development of yield producing factors, such as the length and the diameter of cobs, just as by the thousand seed weight – that were studied in the present research work as well.
In the present research work the decreasing row spacing resulted in a yield increment of 0.67 t ha-1 (4.53%) in 2013, while in contrast in 2014 yield was decreased by 1.75 t ha-1 (14.87%). The high amount of precipitation in March was determinant in 2013: it filled up the soil water stock and balanced the negative effect of the inadequate amount and distribution of precipitation during the vegetation period for the yield. Lower extent of yield increment (0.6 t ha-1) was registered in 2014 in case of the row spacing of 76 cm than in the previous year. In case of a row spacing of 45 cm the difference between the two crop years was 3.1 t ha-1. The highest impact on the yield production factors was found in all treatment combinations in case of the applied hybrid among the three studied treatment factors. In the crop year of 2014 the effect of plant density on cob diameter and thousand seed weight could be revealed as well. In case of the cob diameter significant difference was found between the plant densities of 70 000 and 90 000 plants ha-1, just as between the populations with densities of 50 000 and 90 000 plants ha-1. In case of the thousand seed weight significant differences could be found by the application of plant densities of 70 000 and 90 000 plants ha-1. The highest values of the studied yield producing factors were measured in case of the plant densities of 50 000 and 70 000 plants ha-1; increasing the plant density to 90 000 plants ha-1 resulted in rather decreasing values.
-
The effect of agrotechnological factors and the cropping season on sweetcorn (Zea Mays L. convar. saccharata Koern.) production in a humid year
146-151Views:87We have examined the effect of three agrotechnological factors (sowing time, fertilization, crop density) and four genotypes on the yield
of sweetcorn on chernozem soil in the Hajdúság region in 2009. The experiment was set up at the Látókép Research Site of the University of
Debrecen. We have included two sowing times (27 April, 26 May), six nutrition levels (control, N30+PK, N60+PK, N90+PK, N120+PK,
N150+PK) and four genotypes (Jumbo, Enterprise, Prelude, Box-R) at two crop density levels (45 thousand ha-1).
In the humid cropyear of 2010 the amount of precipitation exceeded the 30-year average by 184 mm in the cropping season; the average
temperature exceeded the same by 0.8 C on the average of the examined months. The circumstances were most favourable for sweetcorn
production with the first sowing time, thus, this was when the yield of all hybrids was the highest.
With early sowing time, the highest yield (23437 kg ha-1 yield) was obtained with Enterprise at 45 thousand ha-1 crop density level at
N150 + PK nutrition level. The highest yield of the other three hybrids was 22253 kg ha-1 (Jumbo) 22286 kg ha-1 (Box-R) and 1873 kg ha-1
(Prelude). With the second sowing time, the highest yield was obtained with Enterprise again (22237 kg ha-1) at 65 thousand ha-1 crop
density level. With this sowing time the yield of Jumbo, Box-R and Prelude was 20888 kg ha-1, 17796 kg ha-1 and 17401 kg ha-1, respectively.
We found that the highest yield was obtained at the highest nutrition levels (N120 + PK, N150 +PK) with the first sowing time, while the same
was obtained at lower nutrition levels (N90 + PK, N120 + PK) with the second sowing time. -
The Effect of Plant Density on the Yield of Sunflower Hybrids in 2000-2002
96-99Views:154In order to ensure modern Hungarian sunflower production, the development of hybrid-specific techniques are highly important. The continual expansion in hybrid choice makes the examination of genotypes necessary in the relation of genotype and environment interactions and critical factors. The Plant density as a complex determinant factor has a strong effect on sunflower yield, quality and plant hygiene. As a result of the experiments, we can state that the optimal density was 45.000-65.000 plant/hectar. In 2001-2002, the optimal density was 45.000-55.000 plant/hectar; while in 2000, it was 65.000 plant/hectar.
-
Effect of Rootstocks on Blooming Capacity and Productivity of AppleCultivars
14-20Views:137The experiment with three different rootstock cultivars was set up in a commercial apple orchard at Nagykutas, which is situated in the western part of Hungary. The aim of our two-year-study was to determine the effect three different growing rootstock cultivars (M9, MM106 and seedling) on the flowering and productivity of 33 apple cultivars. Our observations included the following measurements: the date of the beginning and the end of flowering, flower density, fruit density, fruit numbers per tree and tree productivity. According to our results, it was found that the different growing rootstocks have a great determining effect on the above measurements. Our results showed that the flowering period was similar for all cultivars on the three different rootstocks. However, the flowering and the fruit setting decreased in the order M9, MM106 and seedling rootstocks. In contrast, the fruit number per tree followed, in decreasing order, MM106, seedling and M9 rootstocks.
-
The main influencing factors effecting the yield of maize
137-141Views:115Maize is one of Hungary’s major cereals. In the 1970s and 1980s, we were in the frontline regarding yields and genetic advancement. However, yield fluctuation in maize has increased to 50-60% from 10-20% since the 1980s, which was partly caused by the increase in weather extremes due to climate change and by agrotechnical shortcomings.
The experiments were carried out on typical meadow soil in four repetitions in the period of 2007-2008. In the sowing time experiment, sowing was performed on 10 April, 25 April, 15 May under a uniform fertilization of N120, P2O580 K2O 110 kg/ha. In the fertilization experiment, the yielding capacity of 10 hybrids with different genetic characteristics was studied in a control (non-fertilized) treatment and basic treatment of N40 P2O5 25, K2O 30 kg ha-1 active ingredient and a treatment with fivefold dosages of the basic treatment. In the plant density experiment, the relationship between plant density and yield was analysed at plant densities of 45, 60 and 75 thousand plants per ha. We found a tight correlation between sowing time and yield and grain moisture content at harvest. We found that grain moisture can be reduced by 5-10% by applying an earlier sowing time.
The agroecological optimum fertilizer dosage was N 40-120, P2O5 25-75, K2O 30-90 kg ha-1 active ingredient at a plant density of 60-90 thousand plants ha-1 depending on the hybrid and the year. -
Effects of the cropyear and the agronomical factors on agronomical elements of different sweet corn (Zea Mays L. convar. saccharata Koern.) genotypes in long-term experiment
105-110Views:116In the crop season of 2010 (rainy year), we studied the effect of three agrotechnical factors (sowing time, fertilization, plant density) and four different genotypes on the agronomical characteristics of sweet corn on chernozem soil in the Hajdúság. The experiments were carried out at the Látókép Experimental Farm of the University of Debrecen. In the experiment, two sowing dates (27 April, 26 May), six fertilization levels (control, N30+PK, N60+PK, N90+PK, N120+PK, N150+PK) and four genotypes (Jumbo, Enterprise, Prelude, Box-R) were used at two plant densities (45 thousand plants ha-1, 65 thousand plants ha-1). The amount of precipitation in the season of 2010 was 184 mm higher, while the average temperature was 0.8 oC higher in the studied months than the average of 30 years. Weather was more favourable for sweet maize at the first sowing date, if we consider the yields, however, if we evaluate the agronomical data and yield elements (number of cobs, cob length and diameter, the number of kernel rows, the number of kernels per row) it can be stated that the size of the fertile cobs was greater at the second sowing date due to the lower number of cobs. The largest number of fertile cobs was harvested in the case of the hybrid Enterprise (72367.9 ha-1) in the higher plant density treatment (65 thousand ha-1) at the fertilization level of N120+PK when the first sowing date was applied. The largest cobs were harvested from the hybrid Box-R (cob weight with husks: 516.7 g, number of kernels in one row: 45.7) at the lower plant density (45 thousand plants ha-1) in the second sowing date treatment. Cob diameter and the number of kernel rows were the highest for the hybrid Prelude.
-
The effect of sowing date and plant density in three maize hybrids germination and growth dynamics
105-110Views:194The maize research was set up on chernozem soil at Látókép research area of the Centre for Agricultural Sciences University of Debrecen. We examined the following hybrids SY ARIOSO (FAO 300), P9486 (FAO360), DKC 4943 (FAO 410). The experience was set u pin three different plant density. These were 60, 76 and 90 thousand plant ha-1. The experience was set up in three different sawing date, early, average and late. The germination and growing dynamic measurements was measured in three hybrid, three sawing date, three plant density in four replication. well observed at the first sawing date (April 5) the soil was too cold therefore the germination was begins very slowly to be slowly increased. The second sowing time was the average (April 21) there the germination launch as soon as possible more rapid growth in the amount of heat. We experienced the most intense germination was in the case of the emergence late sowing date (May 5). Looking at the growth dynamics for the first two sawing date was side by side and almost equal to the maximum value. This is explained by the adaptive capacity of the maize to compensate for the sawing difference. For the third time, despite the delayed sawing the maize began to grow more dynamically than in previous sawing times due to the results of the initial good conditions it growth faster than halted in the second half of the season because of the high temperatures and lack of precipitation.