Search

Published After
Published Before

Search Results

  • The roles of mycotoxins in cereal crops production: A comparative study of Hungary and Tanzania
    151-159
    Views:
    188

    Although Hungary and Tanzania's climatic, soil, and technological conditions differ significantly in crop production, cereals crop cultivation is of paramount importance; maize crop dominates the cultivated area (Hungary 1 million ha, Tanzania 3 million ha) both from a feed and food point of view. Unfortunately, in both countries, fungal species (Fusaria, Aspergilli, Penicillia, etc.) that produce various mycotoxins on cereals, including maize grains, are a growing concern. The situation is complicated because these fungal species and their toxins can appear not only on cereals but also on other crops. Despite the prevalence of mycotoxins in both countries, studies show higher exposure risks and contamination above tolerable levels for human consumption in Tanzania to Hungary, with Tanzania observing acute aflatoxicosis.

  • Technological and Economic Analysis on the Hungarian Rice Sector
    226-233
    Views:
    76

    Hungary lies on the northern edge of rice production area. According to this, the climatic conditions area not perfect for this species. The production area of rice involves typically the poorer quality soils, however these meet the requirements of rice. In Hungary exclusively domestic types are grown which have high yield and good quality and these are usually wore successful than foreign types. On the other hand, these Hungarian types should be improved considering safety in production. Nowadays, rice is grown in large scale companies with 300-1400 hectares, where production technology already exists, machinery is suitable, however the latter one a little bit old.
    The average yields of the analysed companies were 3-4 t/ha in the past few years, which were a little bit above the national averages. The operating cost per hectare is almost 200 thousand HUF, from which the main part is the cost of machinery (35%) and the material cost (34%). The main part of the latter one is the irrigation costs (30%). The average cost, calculated from the total production cost, is 80 thousand HUF/t. Considering the above-mentioned costs and the price of rice (75 thousand HUF/t) it can be stated that the profitability of the rice sector is not the best, the cost rated profitability is -6.6%. According to the results of this analysis possibilities for the increase in profitability and improvement are increased subsidies and market price, as well as genetic improvement.

  • Examination of drought stress of two genotype maize hybrids with different fertilization
    53-57
    Views:
    118

    In the growing season of 2019, we analysed stress resulting from climatic factors on maize hybrids of different genotypes, with the aim of gaining a better understanding of the physiological responses of each hybrid, which might support the elaboration of a cost-effective irrigation plan.

    Our experiments were carried out at the Látókép Experimental Station of the University of Debrecen on calcareous chernozem soil in a small-plot long-term field trial with strip plot design. In the scope of the experiment, N-fertilizer doses were applied as basic fertilizer and top-dressing in addition to the non-fertilized (control) treatment. The 60 and 120 kg N/ha doses applied as basic fertilizers in the spring were followed by top-dressing in the V6 phenophase with a +30 kg N/ha dose. Measurements were carried out with the involvement of the Renfor early (FAO 320) and Fornad (FAO 420) late maturity hybrids-

    The stomata of the plants became more and more closed with the progression of the phenological phases; their stomatal conductance decreased. However, the hybrids responded differently to environmental stress. In the case of the Renfor hybrid, the highest conductance (669 mmol/m2-s) was recorded in the V12 phenophase with the 150 kg N/ha treatment. The stomata were more open due to the high turgor pressure, allowing plants to evaporate properly. The plant was in its worst physiological condition on 2nd July, at the time of the appearance of the last leaf in the case of the 120 kg N dose (224 mmol/m2-s). The value measured in the V12 phenophase has already shown that the stomata were closing due to the self-regulating system of the plant. It would have been necessary to dispense irrigation water following the measurement. This confirms the finding that water stress can be prevented by measuring stomatal conductance.

    In the case of the Fornad hybrid, stomatal conductance was the highest on 12th June (630 mmol/m2-s) in the 90 kg N/ha treatment and it was the lowest (183 mmol/m2-s) in VT (emergence of the last leaf) phenophase in the 60 kg N/ha treatment. In this case, the appropriate time for applying irrigation water would have been early July, when the conditions for the plants were still adequate. Subsequently, the stomata began to close due to a reduction of the water resources available to them.

    There was a significant correlation between soil moisture and stomatal conductance, as well as between temperature and stomatal conductance.

  • Harvesting system established for the utilisation of Miscanthus sinensis ‘tatai’ “energy cane” in biomass power plants
    143-150
    Views:
    145

    The increasing demand for energy worldwide and the resulting environmental impacts of fossil fuels forced many countries to turn to renewable energy resources as a clean and sustainable alternative. More than a third of Europe’s binding renewable energy source target of 20% by 2020 will come from solid biomass for electricity and heating according to the National Renewable Energy Action Plans submitted by member states of the European Union (EU) to the European Commission. To achieve this goal long-term yield studies in renewable energy plants are important to determine mean annual biomass and energy yield, and CO2 emission. Field experiments worldwide and also in Europe have demonstrated that Miscanthus, a fast-growing C4 rhizomatous grass can produce some of the highest biomass and energy yield per hectare of all potential energy plants. Miscanthus is a plant that originates from the southern slopes of the Himalayas. It was bred for the Hungarian climatic conditions in 2006 under the name of Miscanthus sinensis ‘Tatai’ (MsT). The species has high frost and drought tolerance and high energy value. This is why there is growing demand for the biomass (lignocellulose) produced by growing this plant. The biomass, produced from the high yield energy reed, can be transported to power plants in large quantities, in forms of bales. Its household consumption is not yet significant. This study presents the external features, characteristics, propagation and plantation process of MsT energy reed. The study also demonstrates the harvest technology of the species worked out between 2009–2012 in Tata, Hungary and the options of supplying to biomass

    power stations.

  • Causes of floods and flood protection in Subcarpathia
    72-75
    Views:
    95

    Subcarpathia is one of the richest regions in surface waters in the Ukraine. Due to its geographical, relief and climatic conditions, it belongs to the active precipitation zone, where great floods frequently occur. As a result of many years of observation, it can be concluded that the interactions of many natural factors can lead to various floods in the catchment area of the river Tisza. These are mostly hydro-meteorological factors, which can lead to great floods with the characteristics of the formed flow. Human activity also significantly influences the occurance of floods: clearing, which can accelerate the process of the runoff, ploughing in the catchment area, which can lead to erosion and the utilisation of areas endangered by floods for various economic sectors.
    A series of questions arose in recent years regarding the formation of floods: what could be the causes of floods and what actions need to be made to prevent them. The evaluation of floods made us conclude that passive protection by using dams does not always ensure protection against floods as these were constructed in different times for different water levels. Many factors can affect the whole process which cannot be foreseen, therefore the development of new solutions and new technologies is necessary in flood protection.

  • Studying on the frost damage of some peach and nectarine varieties
    13-15
    Views:
    99

    To be able to grow stone fruit species, the peach and the nectarine varieties, yield stability is very relevant. However, the climate is suitable in Hungary for growing stone fruits. We have to calculate with damage. Important winter damage and spring frost damage occur in every second year on the Great Pplains. To reveal the frost tolerance of cultivars and to clarify the differences among growing areas is the most important point of peach and nectarine production.
    We, made our experiments in the winter of 2005 (January-February), at Pallag, Zsombó, Siófok, Sóskút and Szatymaz. These former places are determinant in peach and nectarine growing in Hungarian respects.
    In our experiments we analyzed 10-10 fruit shoot from 82 varieties, and we measured the frost damage and the flower bud density.
    The minimum and the maximum frost damage values (%) at the different growing places were 7.6-38.7 at Siófok, 6.5-31.3 at Sóskút, 34.3-100 at Szatymaz, 83.7-99.6 at Pallag and 51.9-99.6 at Zsombó. There were expressive differences between the same cultivars depending on the growing area.
    The frost damage of „Suncrest” variety was 7.6% at Siófok, 8.2% at Sóskút but it was 69.8% at Szatymaz. The „Maystar” variety had 17.6% at Siófok, 12.4% at Sóskút and 87.2% frost damage at Szatymaz. In case of „Redhaven” variety the frost damage values were 16.8% at Sóskút, 54.6% at Szatymaz. We collected fruit shoots from three different heights in case of „Cresthaven” variety. In case of 1 meter height the frost damage was 74.6%, at 2 meter height 44.7%, and 25.2% at 3 meter.
    We experienced also big differences in flower bud density (flower bud/10 cm) of varieties. The following cultivars had the highest flower bud density (6-7 bud/10 cm): „Suncrest”, „Meystar, „Maria Luisa” and the „Maria Bianca”, „Redhaven”, „Michellini” had the lowest flower bud density (2-3 bud/10 cm).
    After our experiments we established that there were very expressive differences among the frost damage of peach and nectarine varieties from different climatic conditions and there are also big variance between the frost damage values of those fruit shoots, what were collected from different heights, but from the same variety. It conspicuous very good among our items, that difference of the flower bud density is very big among the varieties.To be able to grow peach and nectarine successfully, the suitable variety (low frost damage value, high flower bud density) and the suitable growing are is determinant.

  • The Effect of Drought on the Yield of Winter Barley Lines in the Great Cumania Region
    127-129
    Views:
    70

    Winter barley is the third most important fodder plant in Hungary after winter wheat and maize.
    Its accommodation to the changing climatic conditions – mainly to drought in Great Cumania, the driest region of our country is of great importance from the point of view of plant breeding and growing.
    The vegetation period of 2002/2003 can be considered to have been very droughty with 247.5 mm precipitation.
    According to our results six- rowed barley lines have better drought tolerance than two-rowed lines. The average yields of the six-rowed barley lines were 12-25 per cent higher than the yields of the two rowed lines.
    Due to the joint effect of delayed sowing and drought, significant yield depression was detected both in the case of the early and the medium maturity group, and assessable data could be gained only from 35 per cent of the total territory.

  • Effects of water deficit on the growth and yield formation of maize (Zea mays L.)
    143-148
    Views:
    157

    Maize (Zea mays L.) is the most important consuming cereal crop in the world after rice and wheat. This requires an understanding of various management practices as well as conditions that affect maize crop performance. Water deficit stress during crop production is one of the most serious threats to crop production in most parts of the world and drought stress or water deficit is an inevitable and recurring feature of global agriculture and it is against this background that field study of crops response to water deficit is very important to crop producer and researchers to maximize yield and improve crop production in this era of unpredicted climatic changes the world over.
    A pot experiment was carried out to determine the effects of water deficit on growth and yield formation of maize. Two maize cultivars were used Xundan20 and Zhongdan5485. Three levels of soil water content were used in two stages of water control levels at two stages of the maize plant development
    1. The JOINTING STAGE: A. CONTROL (CK) soil water content: from 70% to 80% of soil water holding capacity at the field, soil water content: from 55% to 65% of soil water holding capacity at the field, soil water content: from 40% to 50% of the Soil water holding capacity at the field.
    2. The BIG FLARE PERIOD: A. CONTROL (CK) soil water content: from 75% to 85% of soil water holding capacity at the field, soil water content: from 58% to 68% of soil water holding capacity at the field, soil water content: from 45% to 55% of the soil water holding capacity at the field.
    This research mainly studied the effects of water deficit on physiological, morphology and the agronomical characteristics of the maize plant at the different water stress levels.
    The importance of these results in this experiment will enable plant producers to focus and have a fair idea as to which stage of the maize plant’s development that much attention must be given to in terms of water supply.