Articles

Dietary fibre prevalence and its role in human nutrition

Published:
May 26, 2022
Authors
View
Keywords
License

Copyright (c) 2022 by the Author(s)

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

How To Cite
Selected Style: APA
Csatári, G., & Kovács, S. (2022). Dietary fibre prevalence and its role in human nutrition. Acta Agraria Debreceniensis, 1, 9-13. https://doi.org/10.34101/actaagrar/1/10452
Received 2021-12-16
Accepted 2022-03-31
Published 2022-05-26
Abstract

The role of dietary fibre and its impact on health is increasing. It is worth noting that their beneficial effects on the body are becoming more widely known, but their consumption is still below the recommended daily intake from food. Dietary fibre, as a class of compounds, includes a mixture of plant carbohydrate polymers, both oligosaccharides and polysaccharides. Dietary fibre has been linked to a number of diseases, as its consumption can reduce the risk of cardiovascular disease and type 2 diabetes. They influence the composition of the bacteria present in the human gut. Consuming the right quantity and quality of dietary fibre can play a role in the prevention of certain types of cancer. Nowadays, it is common to produce various fibre-enriched foods, called functional foods, because of the beneficial effects they have previously had on the body. In the present work we want to give a general description of dietary fibre and its role in the body.

References
  1. Akalın, A.S.–Kesenkas, H.–Dinkci, N.–Unal, G.–Ozer, E.–Kınık, O. (2018): Enrichment of probiotic ice cream with different dietary fibers: Structural characteristics and culture viability. Journal of Dairy Science, 101, 37–46.
  2. Asp, N.G. (1987): Definition and analysis of dietary fibre. Scand J Gastroenterol Suppl , 129, 16–20.
  3. Björck, I.–Elmståhl, H.L. (2003): The glycaemic index: importance of dietary fibre and other food properties. Proceedings of the Nutrition Society, 62, 201–206.
  4. Borderías, A.J.–Sánchez-Alonso, I.–Pérez-Mateos, M. (2005): New applications of fibres in foods: Addition to fishery products. Trends in Food Science & Technology, 16, 458–465.
  5. Brennan, C.S. (2005): Dietary fibre, glycaemic response, and diabetes. Mol. Nutr. Food Res., 49, 560–570.
  6. Brown, R.M. (2004): Cellulose structure and biosynthesis: What is in store for the 21st century? Journal of Polymer Science Part A: Polymer Chemistry, 42, 487–495.
  7. Caprez, A.–Arrigoni, E.–Amadò, R.– Neukom, H. (1986): Influence of different types of thermal treatment on the chemical composition and physical properties of wheat bran. Journal of Cereal Science, 4, 233–239.
  8. Carvalho, L.T.–Pires, M.A.–Baldin, J.C.–Munekata, P.E.S.–Carvalho, F.A.L.–Rodrigues, I.–Polizer, Y.J.–Mello, J.L.M.–Lapa-Guimarães, J.–Trindade, M.A. (2019): Partial replacement of meat and fat with hydrated wheat fiber in beef burgers decreases caloric value without reducing the feeling of satiety after consumption. Meat Science, 147, 53–59.
  9. Cho, S.–Prosky, L.–Dreher, M.L. (Eds.) (1999): Complex carbohydrates in foods, Food science and technology. Marcel Dekker, New York.
  10. Choe, J.-H.–Kim, H.-Y.–Lee, J.-M.–Kim, Y.-J.–Kim, C.-J. (2013): Quality of frankfurter-type sausages with added pig skin and wheat fiber mixture as fat replacers. Meat Science, 93, 849–854.
  11. Choi, Y.-S.–Kim, H.-W.–Hwang, K.-E.–Song, D.-H.–Choi, J.-H.–Lee, M.-A.–Chung, H.-J.–Kim, C.-J. (2014): Physicochemical properties and sensory characteristics of reduced-fat frankfurters with pork back fat replaced by dietary fiber extracted from makgeolli lees. Meat Science, 96, 892–900.
  12. Choi, Y.-S –Kim, Y.-B.–Hwang, K.-E.–Song, D.-H.–Ham, Y.-K.–Kim, H.-W.–Sung, J.-M.–Kim, C.-J. (2016): Effect of apple pomace fiber and pork fat levels on quality characteristics of uncured, reduced-fat chicken sausages. Poultry Science, 95, 1465–1471.
  13. Fári, M.–Popp, J. (2016): Biotechnológia – anno 1920-1938 és ma. Ereky Károly programja a fehérjeprobléma megoldásáról és napjaink feladatai. Szaktudás Kiadó Ház Zrt., Budapest. p. 117–128.
  14. Flamm, G.–Glinsmann, W.– Kritchevsky, D.–Prosky, L.–Roberfroid, M. (2001): Inulin and Oligofructose as Dietary Fiber: A Review of the Evidence. Critical Reviews in Food Science and Nutrition, 41, 353–362.
  15. Fuentes-Zaragoza, E.–Riquelme-Navarrete, M.J.–Sánchez-Zapata, E.–Pérez-Álvarez, J.A. (2010): Resistant starch as functional ingredient: A review. Food Research International, 43, 931–942.
  16. Giacco, R.–Clemente, G.–Riccardi, G. (2002): Dietary fibre in treatment of diabetes: myth or reality? Digestive and Liver Disease, Probiotics, Prebiotics and New Foods, 34, S140–S144.
  17. Grootaert, C.–Delcour, J.A.–Courtin, C.M.–Broekaert, W.F.–Verstraete, W.–Wiele, T. (2007): Microbial metabolism and prebiotic potency of arabinoxylan oligosaccharides in the human intestine. Trends in Food Science & Technology, 18, 64–71.
  18. Guarner, F. (2005): Inulin and oligofructose: impact on intestinal diseases and disorders. Br J Nutr, 93, S61–S65.
  19. Gunness, P.– John Gidley, M. (2010): Mechanisms underlying the cholesterol -lowering properties of soluble dietary fibre polysaccharides. Food & Function, 1, 149–155.
  20. Gyawali, R.–Ibrahim, S.A. (2016): Effects of hydrocolloids and processing conditions on acid whey production with reference to Greek yogurt. Trends in Food Science & Technology, 56, 61–76.
  21. Han, M.–Bertram, H.C. (2017): Designing healthier comminuted meat products: Effect of dietary fibers on water distribution and texture of a fat-reduced meat model system. Meat Science, 133, 159–165.
  22. Haraszty, Á. (1978): Növényszervezettan és növényélettan. Nemzeti Tankkönyvkiadó, Budapest. p. 134–150.
  23. Harris, P.J.–Ferguson, L.R. (1993): Dietary fibre: its composition and role in protection against colorectal cancer. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 290, 97–110.
  24. Henning, S.St.C.–Tshalibe, P.–Hoffman, L.C. (2016): Physico-chemical properties of reduced-fat beef species sausage with pork back fat replaced by pineapple dietary fibres and water. LWT 74, 92–98.
  25. Jackson, C.L.–Dreaden, T.M.–Theobald, L.K.–Tran, N.M.–Beal, T.L.–Eid, M.–Gao, M.Y.–Shirley, R.B.–Stoffel, M.T.–Kumar, M.V.– Mohnen, D. (2007): Pectin induces apoptosis in human prostate cancer cells: correlation of apoptotic function with pectin structure. Glycobiology, 17, 805–819.
  26. James, S.L.–Muir, J.G.–Curtis, S.L.–Gibson, P.R. (2003): Dietary fibre: a roughage guide: Dietary fibre. Internal Medicine Journal, 33, 291–296.
  27. Jiménez-Escrig, A.–Sánchez-Muniz, F.J. (2000): Dietary fibre from edible seaweeds: Chemical structure, physicochemical properties and effects on cholesterol metabolism. Nutrition Research, 20, 585–598.
  28. Jing, Y.–Chi, Y.-J. (2013): Effects of twin-screw extrusion on soluble dietary fibre and physicochemical properties of soybean residue. Food Chemistry, 138, 884–889.
  29. Johnson, M.–Pace, R.D. (2010): Sweet potato leaves: properties and synergistic interactions that promote health and prevent disease. Nutrition Reviews, 68, 604–615.
  30. Kendall, C.W.C.–Esfahani, A.–Jenkins, D.J.A. (2010): The link between dietary fibre and human health. Food Hydrocolloids, 24, 42–48.
  31. Khuenpet, K.–Fukuoka, M.–Jittanit, W.–Sirisansaneeyakul, S. (2017): Spray drying of inulin component extracted from Jerusalem artichoke tuber powder using conventional and ohmic-ultrasonic heating for extraction process. Journal of Food Engineering, 194, 67–78.
  32. Kiewlicz, J.–Rybicka, I. (2020): Minerals and their bioavailability in relation to dietary fiber, phytates and tannins from gluten and gluten-free flakes. Food Chemistry, 305, 125452
  33. Kim, H.-W.–Miller, D.K.–Lee, Y.J.–Kim, Y.H.B. (2016): Effects of soy hull pectin and insoluble fiber on physicochemical and oxidative characteristics of fresh and frozen/thawed beef patties. Meat Science, 117, 63–67.
  34. Kovács, Sz. (2019): Növénytani ismeretek a növénytermesztésben. In: Pepó, P. (ed.): Általános növénytermesztési ismeretek. Mezőgazda Lap-és Könyvkiadó, Budapest, p. 84–112.
  35. Li, S.–Chen, G.–Qiang, S.–Tang, D.–Chen, Y.–Zhang, Z.–Lei, Z.–Chen, Y. (2019): Intensifying soluble dietary fiber production and properties of soybean curd residue via autoclaving treatment. Bioresource Technology Reports, 7, 100203.
  36. Maheshwari, G.–Sowrirajan, S.–Joseph, B. (2019): β-Glucan, a dietary fiber in effective prevention of lifestyle diseases – An insight. Bioactive Carbohydrates and Dietary Fibre, 19, 100187.
  37. Manzi, P. (2000): Beta-glucans in edible mushrooms. Food Chemistry, 68, 315–318.
  38. May, C.D. (1990): Industrial Pectins: Sources, Production and Applications. Carbohydrate Polymers, 12, 79–99.
  39. Mendis, M.–Simsek, S. (2014): Arabinoxylans and human health. Food Hydrocolloids, 42, 239–243.
  40. Mézes, M.–Erdélyi, M. (2018). Az élelmiszerek rosttartalmának antioxidáns hatása. Orvosi Hetilap, 159, 709–712.
  41. Møller, S.M.–Grossi, A.–Christensen, M.–Orlien, V.–Søltoft-Jensen, J.–Straadt, I.K.–Thybo, A.K.–Bertram, H.C. (2011): Water properties and structure of pork sausages as affected by high-pressure processing and addition of carrot fibre. Meat Science, 87, 387–393.
  42. Mudgil, D.–Barak, S. (2013): Composition, properties and health benefits of indigestible carbohydrate polymers as dietary fiber: A review. International Journal of Biological Macromolecules, 61, 1–6.
  43. Nair, B.–Asp, N.–Nyman, M.–Persson, H. (1987): Binding of mineral elements by some dietary fibre components—in vitro (I). Food Chemistry, 23, 295–303.
  44. Osman, H. (1990): Dietary fiber composition of common vegetables and fruits in Malaysia. Food Chemistry, 37, 21–26.
  45. Pietrasik, Z.–Sigvaldson, M.–Soladoye, O.P.–Gaudette, N.J. (2020): Utilization of pea starch and fibre fractions for replacement of wheat crumb in beef burgers. Meat Science 161, 107974.
  46. Praznik, W.–Cieslik, E.–Filipiak-Florkiewicz, A. (2002): Soluble dietary fibres in Jerusalem artichoke powders: Composition and application in bread 7. Nahrung/Food 46, 3, 151–157.
  47. Prosky, L. (2000): What is Dietary Fibre? A New Look at the Definition, in: Advanced Dietary Fibre Technology. John Wiley & Sons, Ltd, pp. 61–76.
  48. Puangbut, D.–Jogloy, S.–Vorasoot, N.–Srijaranai, S.–Holbrook, C.C.–Patanothai, A. (2015): Variation of inulin content, inulin yield and water use efficiency for inulin yield in Jerusalem artichoke genotypes under different water regimes. Agricultural Water Management, 152, 142–150.
  49. Redondo-Cuenca, A.–Villanueva-Suárez, M.J.–Rodríguez-Sevilla, M.D.–Mateos-Aparicio, I. (2007): Chemical composition and dietary fibre of yellow and green commercial soybeans (Glycine max). Food Chemistry, 101, 1216–1222.
  50. Reynolds, A.N.–Akerman, A.P.–Mann, J. (2020): Dietary fibre and whole grains in diabetes management: Systematic review and meta-analyses. PLOS Medicine, 17, e1003053.
  51. Riccardi, G.–Rivellese, A.–Pacioni, D.–Genovese, S.–Mastranzo, P.–Mancini, M. (1984): Separate influence of dietary carbohydrate and fibre on the metabolic control in diabetes. Diabetologia, 26, 116–121.
  52. Roberfroid, M.B. (2005): Introducing inulin-type fructans. Br J Nutr, 93, S13–S25.
  53. Sajilata, M.G.–Singhal, R.S.–Kulkarni, P.R. (2006): Resistant Starch?A Review. Comp Rev Food Sci Food Safety, 5, 1–17.
  54. Salas-Salvadó, J. (2010): Dietary fibre: influence on body weight, glycemic control and plasma cholesterol profile. Nutricion Hospitalaria, 25, 327–340.
  55. Sáyago-Ayerdi, S.G.–Brenes, A.–Goñi, I. (2009): Effect of grape antioxidant dietary fiber on the lipid oxidation of raw and cooked chicken hamburgers. LWT - Food Science and Technology, 42, 971–976.
  56. Smith, U. (1987): Dietary fibre, diabetes and obesity. Scandinavian Journal of Gastroenterology, 22, 151–153.
  57. Soukoulis, C.– Lebesi, D.–Tzia, C. (2009): Enrichment of ice cream with dietary fibre: Effects on rheological properties, ice crystallisation and glass transition phenomena. Food Chemistry 115, 665–671.
  58. Torre, M.–Rodriguez, A.R.–Saura-Calixto, F. (1995): Interactions of Fe(II), Ca(II) and Fe(III) with high dietary fibre materials: A physicochemical approach. Food Chemistry, 54, 23–31.
  59. Tungland, B.C.–Meyer, D. (2002): Nondigestible Oligo- and Polysaccharides (Dietary Fiber): Their Physiology and Role in Human Health and Food. Comprehensive Reviews in Food Science and Food Safety, 1, 90–109.
  60. Turcsányi, G (1995): Mezőgazdasági növénytan. Mezőgazdasági Szaktudás Kiadó. Budapest. p. 46-48.
  61. Viuda-Martos, M.–Ruiz-Navajas, Y.–Fernández-López, J.–Pérez-Álvarez, J.A. (2010): Effect of orange dietary fibre, oregano essential oil and packaging conditions on shelf-life of bologna sausages. Food Control 21, 436–443.
  62. Vuholm, S.–Arildsen Jakobsen, L.M.–Vejrum Sørensen, K.–Kehlet, U.–Raben, A.–Kristensen, M. (2014): Appetite and food intake after consumption of sausages with 10% fat and added wheat or rye bran. Appetite 73, 205–211.
  63. Vuksan, V.–Jenkins, A.L.–Rogovik, A.L.–Fairgrieve, C.D.–Jovanovski, E.–Leiter, L.A. (2011): Viscosity rather than quantity of dietary fibre predicts cholesterol-lowering effect in healthy individuals. Br J Nutr, 106, 1349–1352.
  64. Wang, J. (2020): Bioaccessibility of calcium in freeze-dried yogurt based snacks. Food Science and Technology 129, 109527.
  65. Yamada, H.–Kiyohara, H.–Matsumoto, T. (2003): Recent Studies on Possible Functions of Bioactive Pectins and Pectic Polysaccharides from Medicinal Herbs on Health Care. In Advances in Pectin and Pectinase Research: Voragen, F., Schols, H., Visser, R. Eds.; Springer Netherlands, Dordrecht, pp. 481–490.
  66. Yang, J.–Xiao, A.–Wang, C. (2014): Novel development and characterisation of dietary fibre from yellow soybean hulls. Food Chemistry 161, 367–375.