Gépészeti és járműmérnöki tudományok

Prediction of FLD using Abaqus and Gurson Model for Simple Flat Spacemen

Megjelent:
2023-09-29
Szerzők
Megtekintés
Kulcsszavak
Licenc

Copyright (c) 2023 Tatiane Domokos, Attila Baksa, Szabolcs Szávai

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Hogyan hivatkozzuk
Kiválasztott formátum: APA
Domokos, T., Baksa, A., & Szávai, S. (2023). Prediction of FLD using Abaqus and Gurson Model for Simple Flat Spacemen. International Journal of Engineering and Management Sciences, 8(3), 32-44. https://doi.org/10.21791/IJEMS.2023.023
Beküldött 2023-01-17
Elfogadott 2023-03-10
Publikált 2023-09-29
Absztrakt

In the past century, in many industries, such as, metal forming industry, it has been important to predict ductile damage and fracture of metals under complex loadings. Regarding damage mechanics, one of the most classical models is the GTN, which was originated from Gurson and later enhanced by Tvergaard and Needleman. The inprovement was achieved by introducing an equivalent void volume fraction f and two more parameters called q1 and q2 into the yield function of Gurson’s model.

Hivatkozások
  1. Chahboub, Y., Szavai, S., Bezi, Z., Determination of GTN Parameters of Sent Specimen During Ductile Fracture, MultiScience – XXXIII. MicroCAD International Multidisciplinary Scientific Conference – University of Miskolc, Hungary, ISBN 978-963-358-177-3.
  2. Abbasi, M., Ketabchi, M., Izadkhah, H., Fatmehsaria, D.H., Aghbash, A.N., Identification of GTN Model Parameters by Application of Response Surface Methodology. Science Direct. Procedia Engineering 10 (2011) 415-420.
  3. Zao, H., Hao Z., Yumei, H., An Improved Shear Modified GTN Model for Ductile Fracture of Aluminium Alloys Under Different Stress States and its Parameters Identification, International Journal of Mechanical Sciences 192 (2021), 106081.
  4. Wierzbicki T, Bao Y, Lee YW, Bai Y. Calibration and evaluation of seven fracture models. International Journal of Mechanical Sciences 2005;47(4-5):719–43.
  5. Achouri M, Germain G, Dal Santo P, Saidane D. Experimental and numerical analysis of micromechanical damage in the punching process for High-Strength Low-Alloy steels. Materials and Design 2014; 56:657–70.
  6. Rice JR, Tracey DM. On the ductile enlargement of voids in triaxial stress fields∗. Journal of the Mechanics Physics of Solids 1969;17(3):201–17.
  7. D.Swapna, Ch,Srinivasa Rao, S.Radhika. A Review on Deep Drawing Process. International Journal of Emerging Research in Management & Technology (June 2017), ISSN: 2278-9359 (Volume-6, Issue-6)
  8. Tvergaard V. Influence of voids on shear band instabilities under plane strain conditions. International Journal of fracture 1981;17(4):389–407.
  9. Benzerga AA, Leblond J-B. Ductile fracture by void growth to coalescence. Advances in applied mechanics 2010;44(10):169–305.
  10. Dowling NE. Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture, and Fatigue. Prentice Hall; 1993.
  11. Lemaitre J. A Continuous Damage Mechanics Model for Ductile Fracture. Transactions of the Asme Journal of Engineering Materials and Technology 1985;107(107):83–9.
  12. Sandoval C, Malcher L, Canut F, Araújo L, Doca T, Araújo J. Micromechanical Gurson-based continuum damage under the context of fretting fatigue: Influence of the plastic strain field. International Journal of Plasticity 2020; 125:235–64.
Adatbázis logók