Materials Sciences

Study of Rotating and Jet Plasma Treatments on Surface Wettability of Glass

Published:
2025-12-28
Authors
View
Keywords
License

Copyright (c) 2025 Miklós Berczeli, Zoltán Weltsch

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

How To Cite
Selected Style: APA
Berczeli, M., & Weltsch, Z. (2025). Study of Rotating and Jet Plasma Treatments on Surface Wettability of Glass. International Journal of Engineering and Management Sciences, 10(4), 67-79. https://doi.org/10.21791/IJEMS.2025.23
Received 2025-12-02
Accepted 2025-12-27
Published 2025-12-28
Abstract

This work investigates the wettability properties of a glass surfaces by using atmospheric pressure cold plasma systems. Treatments were performed by using a rotating-head unit and a jet-type torch during the plazma treatments. The nozzle-to-surface distance (8–15 mm) and the feed rate (50–400 mm/s) were modifying. The untreated glass showed limited wetting, with average water and ethylene glycol contact angles (WCA and EGCA) of 64.7° ± 1.8° and 45.2° ± 1.5°, respectively. After plasma treatment, both systems showed clear improvements, although their efficiency profiles were different. Using the rotating plasma head at 8 mm and 100 mm/s speeds, the WCA decreased to 9.3° ± 0.8°, indicating almost complete wetting. Jet plasma achieved similar results (WCA = 14.1° ± 1.2°), but slightly less uniformly. Changes in wettability were closely related to the exposure time determined by the feed rate: slower movement increased activation, while overexposure occasionally resulted in small thermally induced surface marks that were visible under an optical microscope. As the results showed the rotating plasma reached more homogeneous activation, while the jet system provided stronger local effects at a lower energy input. Based on these results the atmospheric plasma is effective in increasing the surface energy. Rotating systems appear to be advantageous for large, flat areas, while jet plasma is better suited for localized surface modification aimed at improving adhesion or coating performance.

References
  1. [1] F. Lisco, A. Shaw, A. Wright, J. M. Walls, and F. Iza, “Atmospheric-pressure plasma surface activation for solution processed photovoltaic devices,” Solar Energy, vol. 146, pp. 287–297, 2017, doi: 10.1016/j.solener.2017.02.030.
  2. [2] A. Buček, A. Brablec, D. Kováčik, P. Sťahel, and M. Černák, “Glass bond adhesive strength improvement by DCSBD atmospheric-pressure plasma treatment,” undefined, vol. 78, pp. 1–3, Oct. 2017, doi: 10.1016/J.IJADHADH.2017.06.017.
  3. [3] K. G. Kostov, T. M. C. Nishime, A. H. R. Castro, A. Toth, and L. R. O. Hein, “Surface modification of polymeric materials by cold atmospheric plasma jet,” Appl Surf Sci, vol. 314, pp. 367–375, Sep. 2014, doi: 10.1016/J.APSUSC.2014.07.009.
  4. [4] A. E. Wiącek, A. Gozdecka, M. Jurak, K. Przykaza, and K. Terpiłowski, “Wettability of plasma modified glass surface with bioglass layer in polysaccharide solution,” Colloids Surf A Physicochem Eng Asp, vol. 551, no. February, pp. 185–194, 2018, doi: 10.1016/j.colsurfa.2018.04.061.
  5. [5] M. Lucaci, D. Patroi, V. Tsakiris, M. V. Lungu, E. Manta, and A. Iorga, “Studies on Fe-Cr-Ni-Si-B Bulk Metallic Glass for Automotive Applications,” Adv Mat Res, vol. 1114, pp. 68–75, Jul. 2015, doi: 10.4028/WWW.SCIENTIFIC.NET/AMR.1114.68.
  6. [6] D. P. Dowling, M. Donegan, F. T. O’Neill, and V. Milosavljevic, “Comparing the performance of three commercial atmospheric plasma jets for the activation of PET,” pp. 4E-9-4E – 9, Jan. 2013, doi: 10.1109/PLASMA.2012.6383971.
  7. [7] R. Múgica-Vidal, F. Alba-Elías, E. Sainz-García, and M. Pantoja-Ruiz, “Atmospheric pressure air plasma treatment of glass substrates for improved silver/glass adhesion in solar mirrors,” Solar Energy Materials and Solar Cells, vol. 169, no. February, pp. 287–296, 2017, doi: 10.1016/j.solmat.2017.05.034.
  8. [8] C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, “Atmospheric pressure plasmas: A review,” Spectrochim Acta Part B At Spectrosc, vol. 61, no. 1, pp. 2–30, 2006, doi: 10.1016/j.sab.2005.10.003.
  9. [9] G. A. Wade, W. J. Cantwell, and R. C. Pond, “Plasma surface modification of glass fibre-reinforced nylon-6,6 thermoplastic composites for improved adhesive bonding,” Interface Science, vol. 8, no. 4, pp. 363–373, 2000, doi: 10.1023/A:1008779728985.
  10. [10] L. Bónová, A. Zahoranová, D. Kováčik, M. Zahoran, M. Mičušík, and M. Černák, “Atmospheric pressure plasma treatment of flat aluminum surface,” Appl Surf Sci, vol. 331, pp. 79–86, 2015, doi: 10.1016/j.apsusc.2015.01.030.
  11. [11] L. Chen, Y. Wei, X. Zuo, J. Cong, and Y. Meng, “The atmospheric pressure air plasma jet with a simple dielectric barrier,” Thin Solid Films, vol. 521, pp. 226–228, 2012, doi: 10.1016/j.tsf.2011.11.069.
  12. [12] J. Muñoz, J. A. Bravo, and M. D. Calzada, “Aluminum metal surface cleaning and activation by atmospheric-pressure remote plasma,” Appl Surf Sci, vol. 407, pp. 72–81, 2017, doi: 10.1016/j.apsusc.2017.02.092.
  13. [13] K. A. Lis et al., “Inactivation of multidrug-resistant pathogens and Yersinia enterocolitica with cold atmospheric-pressure plasma on stainless-steel surfaces,” Int J Antimicrob Agents, vol. 52, no. 6, pp. 811–818, 2018, doi: 10.1016/j.ijantimicag.2018.08.023.
  14. [14] H. Baránková and L. Bárdos, “Atmospheric pressure plasma conversion of CO2 to solid deposits,” Results Phys, vol. 5, no. x, pp. 257–258, 2015, doi: 10.1016/j.rinp.2015.08.011.
  15. [15] T. Homola, J. Matoušek, B. Hergelová, M. Kormunda, L. Y. L. Wu, and M. Černák, “Activation of poly(methyl methacrylate) surfaces by atmospheric pressure plasma,” Polym Degrad Stab, vol. 97, no. 6, pp. 886–892, Jun. 2012, doi: 10.1016/J.POLYMDEGRADSTAB.2012.03.029.
  16. [16] C. Rodríguez-Villanueva, N. Encinas, J. Abenojar, and M. A. Martínez, “Assessment of atmospheric plasma treatment cleaning effect on steel surfaces,” Surf Coat Technol, vol. 236, pp. 450–456, 2013, doi: 10.1016/j.surfcoat.2013.10.036.
  17. [17] M. Kehrer, A. Rottensteiner, W. Hartl, J. Duchoslav, S. Thomas, and D. Stifter, “Cold atmospheric pressure plasma treatment for adhesion improvement on polypropylene surfaces,” Surf Coat Technol, vol. 403, no. July, p. 126389, 2020, doi: 10.1016/j.surfcoat.2020.126389.
  18. [18] D. Kocsis, J. T. Kiss, and I. W. Arpad, “Evaluating Battery Electric Vehicle Usage in the EU: A Comparative Study Based on Member State Energy Mixes,” Heliyon, vol. 10, no. 9, 2024.
  19. [19] I. Árpád, J. T. Kiss, G. Bellér, and D. Kocsis, “Sustainability Investigation of Vehicles’ CO₂ Emission in Hungary,” Sustainability, vol. 13, no. 15, 2021.