Management Sciences

Industry 4.0 Concept and Key Elements

Published:
2022-10-14
Author
View
Keywords
License

Copyright (c) 2022 Szabolcs Kovács

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

How To Cite
Selected Style: APA
Kovács, S. (2022). Industry 4.0 Concept and Key Elements. International Journal of Engineering and Management Sciences, 7(2), 100-111. https://doi.org/10.21791/IJEMS.2022.2.8.
Received 2022-05-08
Accepted 2022-07-26
Published 2022-10-14
Abstract

Growing and constantly changing international competition, increasing market volatility and demand for increasingly customised products (personalised manufacturing), and shorter product life cycles create significant challenges for companies that traditional production systems can no longer meet. Industry 4.0 is a new manufacturing paradigm focused on creating intelligent products and processes. The focus has been placed on achieving fully effective customised production under conditions suitable for mass production. Make-to-order replaces make-to-stock. Despite the growing interest in Industry 4.0, it is still not a consensual concept. There is no clear idea about this new manufacturing paradigm, so I attempt to present the available definitions of Industry 4.0 through the presentation of the scientific literature, declare the concept's technical elements, and present them in detail to get a clearer picture of the concept.

References
  1. AHUETT-GARZA, H. and KURFESS, T., 2018. A brief discussion on the trends of habilitating technologies for Industry 4.0 and Smart manufacturing. Manufacturing Letters, 15, pp. 60-63.
  2. ALMADA-LOBO, F., 2015. The Industry 4.0 revolution and the future of Manufacturing Execution Systems (MES). Journal of innovation management, 3(4), pp. 16-21.
  3. ARNOLD, C., KIEL, D. and VOIGT, K., 2017. Innovative business models for the industrial internet of things. BHM Berg-und Hüttenmännische Monatshefte, 162(9), pp. 371-381.
  4. BRANGER, J. and PANG, Z., 2015. From automated home to sustainable, healthy and manufacturing home: a new story enabled by the Internet-of-Things and Industry 4.0. Journal of Management Analytics, 2(4), pp. 314-332.
  5. BRETTEL, M., FRIEDERICHSEN, N., KELLER, M. and ROSENBERG, M., 2014. How virtualization, decentralization and network building change the manufacturing landscape: An Industry 4.0 Perspective. International Journal of Information and Communication Engineering, 8(1), pp. 37-44.
  6. BUXMANN, P., HESS, T. and RUGGABER, R., 2009. Internet of services. Business & Information Systems Engineering, 1(5), pp. 341-342.
  7. DA SILVA, ELIAS HANS DENER RIBEIRO, SHINOHARA, A.C., DE LIMA, E.P., ANGELIS, J. and MACHADO, C.G., 2019. Reviewing Digital Manufacturing concept in the Industry 4.0 paradigm. Procedia CIRP, 81, pp. 240-245.
  8. DA XU, L., HE, W. and LI, S., 2014. Internet of things in industries: A survey. IEEE Transactions on industrial informatics, 10(4), pp. 2233-2243.
  9. DALENOGARE, L.S., BENITEZ, G.B., AYALA, N.F. and FRANK, A.G., 2018. The expected contribution of Industry 4.0 technologies for industrial performance. International Journal of Production Economics, 204, pp. 383-394.
  10. DEMETER, K., LOSONCI, D., NAGY, J. and HORVÁTH, B., 2019. Tapasztalatok az Ipar 4.0-val–egy esetalapú elemzés. Vezetéstudomány-Budapest Management Review, 50(4), pp. 11-23.
  11. EROL, S., JÄGER, A., HOLD, P., OTT, K. and SIHN, W., 2016. Tangible Industry 4.0: a scenario-based approach to learning for the future of production. Procedia CiRp, 54, pp. 13-18.
  12. FLEISCH, E., 2010. What is the internet of things? An economic perspective. Economics, Management, and financial markets, 5(2), pp. 125-157.
  13. FÜLEP, I., NICK, G.A. and VÁRGEDŐ, T., 2018. Zászlón a digitalizáció-Ipar 4.0. Új Magyar Közigazgatás, 11(2), pp. 45-55.
  14. GREENWOOD, J. and JOVANOVIC, B., 1999. The information-technology revolution and the stock market. American Economic Review, 89(2), pp. 116-122.
  15. GUBÁN, M. and KOVÁCS, G., 2017. INDUSTRY 4.0 CONCEPTION. Acta Technica Corviniensis-Bulletin of Engineering, 10(1), pp. 111.
  16. HALEEM, A. and JAVAID, M., 2019. Additive manufacturing applications in industry 4.0: a review. Journal of Industrial Integration and Management, 4(04), pp. 1930001.
  17. HERMANN, M., PENTEK, T. and OTTO, B., 2016. Design principles for industrie 4.0 scenarios, 2016 49th Hawaii international conference on system sciences (HICSS) 2016, IEEE, pp. 3928-3937.
  18. HOFMANN, E. and RÜSCH, M., 2017a. Industry 4.0 and the current status as well as future prospects on logistics. Computers in Industry, 89, pp. 23-34.
  19. HUSI GÉZA, 2016. Ipar 4.0. , pp. 1-43.
  20. ILLÉS, B., 2016. LOGISZTIKAI TRENDEK, UMI-TWINN PROJEKT, MultiScience - XXX. microCAD International Multidisciplinary Scientific Conference, 2016.04.21-22. 2016, University of Miskolcs, pp. 1-6.
  21. JAN BARTODZIEJ, C., 2017. The Concept Industry 4.0: An Empirical Analysis of Technologies and Applications in Production Logistics. Springer Gabler.
  22. JAZDI, N., 2014. Cyber physical systems in the context of Industry 4.0, 2014 IEEE international conference on automation, quality and testing, robotics 2014, IEEE, pp. 1-4.
  23. KAGERMANN, H., WAHLSTER, W. and HELBIG, J., 2013. Recommendations for implementing the strategic initiative Industrie 4.0: Final report of the Industrie 4.0 Working Group. Forschungsunion: Berlin, Germany.
  24. KOVÁCS, O., 2017a. Az ipar 4.0 komplexitása–I. Közgazdasági szemle, 64(7-8), pp. 823-854.
  25. KOVÁCS, O., 2017b. az ipar 4.0 komplexitása–ii. Közgazdasági szemle, 64(9), pp. 970-987.
  26. LEE, E.A., 2008. Cyber physical systems: Design challenges, 2008 11th IEEE international symposium on object and component-oriented real-time distributed computing (ISORC) 2008, IEEE, pp. 363-369.
  27. LEE, J., BAGHERI, B. and KAO, H., 2015. A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manufacturing letters, 3, pp. 18-23.
  28. LUTHRA, S., GARG, D., MANGLA, S.K. and BERWAL, Y.P.S., 2018. Analyzing challenges to Internet of Things (IoT) adoption and diffusion: An Indian context. Procedia Computer Science, 125, pp. 733-739.
  29. MAHFOUZ, A. and ARISHA, A., 2013. Lean distribution assessment using an integrated framework of value stream mapping and simulation, 2013 Winter Simulations Conference (WSC) 2013, IEEE, pp. 3440-3449.
  30. MITTERMAIR, M., 2015. Industry 4.0 Initiatives. SMT: Surf.mt.Technol, 30(3), pp. 58-63.
  31. MOKYR, J. and STROTZ, R.H., 1998. The second industrial revolution, 1870-1914. Storia dell’economia Mondiale, (1), pp. 219-245.
  32. MONOSTORI, L., KÁDÁR, B., BAUERNHANSL, T., KONDOH, S., KUMARA, S., REINHART, G., SAUER, O., SCHUH, G., SIHN, W. and UEDA, K., 2016. Cyber-physical systems in manufacturing. Cirp Annals, 65(2), pp. 621-641.
  33. MÜLLER, J., DOTZAUER, V. and VOIGT, K., 2017. Industry 4.0 and its impact on reshoring decisions of German manufacturing enterprises. Supply management research. Springer, pp. 165-179.
  34. NAGY, J., 2019. Az Ipar 4.0 fogalma és kritikus kérdései–vállalati interjúk alapján. Vezetéstudomány-Budapest Management Review, 50(1), pp. 14-26.
  35. OESTERREICH, T.D. and TEUTEBERG, F., 2016. Understanding the implications of digitisation and automation in the context of Industry 4.0: A triangulation approach and elements of a research agenda for the construction industry. Computers in Industry, 83, pp. 121-139.
  36. OLÁH, J., 2019. Az Ipar 4.0 keretrendszere, valamint a kapcsolódó technológiák. International Journal of Engineering and Management Sciences, 4(4), pp. 213-223.
  37. OLÁH, J., POPP, J. and ERDEI, E., 2019. Az Ipar 5.0 megjelenése: ember és robot együttműködése. Logisztika Trendek és legjobb gyakorlatok kiadvány, 5(1), pp. 12-19.
  38. PARVIN, S., HUSSAIN, F.K., HUSSAIN, O.K., THEIN, T. and PARK, J.S., 2013. Multi-cyber framework for availability enhancement of cyber physical systems. Computing, 95(10), pp. 927-948.
  39. PEREIRA, A.C. and ROMERO, F., 2017. A review of the meanings and the implications of the Industry 4.0 concept. Procedia Manufacturing, 13, pp. 1206-1214.
  40. PÉTER, T. and BÉLA, I., 2016. Gyártórendszerek folyamatfejlesztési lehetőségei a negyedik ipari forradalomban: Process improvement possibilities for manufacturing systems in the industry 4.0/Posibilitățile dezvoltării proceselor în sistemelor de fabricație în a 4-a revoluție industrială. Műszaki Szemle, , pp. 41-48.
  41. RADZIWON, A., BILBERG, A., BOGERS, M. and MADSEN, E.S., 2014. The smart factory: exploring adaptive and flexible manufacturing solutions. Procedia engineering, 69, pp. 1184-1190.
  42. ROBLEK, V., MEŠKO, M. and KRAPEŽ, A., 2016. A complex view of industry 4.0. Sage open, 6(2), pp. 2158244016653987.
  43. SCHMIDT, R., MÖHRING, M., HÄRTING, R., REICHSTEIN, C., NEUMAIER, P. and JOZINOVIĆ, P., 2015. Industry 4.0-potentials for creating smart products: empirical research results, International Conference on Business Information Systems 2015, Springer, pp. 16-27.
  44. SCHUH, G., POTENTE, T., WESCH-POTENTE, C. and HAUPTVOGEL, A., 2013. 10.6 Sustainable increase of overhead productivity due to cyber-physical-systems.
  45. SHARIATZADEH, N., LUNDHOLM, T., LINDBERG, L. and SIVARD, G., 2016. Integration of digital factory with smart factory based on Internet of Things. Procedia Cirp, 50, pp. 512-517.
  46. SIMON JÁNOS, 2016. A negyedik ipari forradalom–Industry 4.0, A magyar tudomány napja a délvidéken 2016, Dialóg Campus Kiadó, pp. 493-501.
  47. SPATH, D., GANSCHAR, O., GERLACH, S., HÄMMERLE, M., KRAUSE, T. and SCHLUND, S., 2013. Produktionsarbeit der Zukunft-Industrie 4.0. Fraunhofer Verlag Stuttgart.
  48. VON TUNZELMANN, N., 2003. Historical coevolution of governance and technology in the industrial revolutions. Structural Change and Economic Dynamics, 14(4), pp. 365-384.
  49. WAHLSTER, W., GRALLERT, H., WESS, S., FRIEDRICH, H. and WIDENKA, T., 2014. Towards the internet of services: The THESEUS research program. Springer.
  50. WANG, S., WAN, J., LI, D. and ZHANG, C., 2016. Implementing smart factory of industrie 4.0: an outlook. International journal of distributed sensor networks, 12(1), pp. 3159805.
  51. WEYER, S., SCHMITT, M., OHMER, M. and GORECKY, D., 2015. Towards Industry 4.0-Standardization as the crucial challenge for highly modular, multi-vendor production systems. Ifac-Papersonline, 48(3), pp. 579-584.
  52. YANG, P. and XU, L., 2018. The Internet of Things (IoT): Informatics methods for IoT-enabled health care. Journal of Biomedical Informatics, 87, pp. 154-156.
  53. ZHONG, R.Y., XU, X., KLOTZ, E. and NEWMAN, S.T., 2017. Intelligent manufacturing in the context of industry 4.0: a review. Engineering, 3(5), pp. 616-630.
  54. ZHOU, K., LIU, T. and ZHOU, L., 2015. Industry 4.0: Towards future industrial opportunities and challenges, 2015 12th International conference on fuzzy systems and knowledge discovery (FSKD) 2015, IEEE, pp. 2147-2152.
Database Logos