Search
Search Results
-
Effect of Heat Input on the Toughness Properties of S690QL Steel during Hardfacing
1-12Views:63In recent years, the use of high-strength steels in hardfacing process has become increasingly common. One typical industrial example is the case of hydraulic shears used in building demolition operations, where the components are exposed not only to significant abrasive wear but also to intense dynamic loading. The use of quenched and tempered high-strength steel grade S690QL has become particularly widespread in this field, primarily as the base material for the hardfacing applied to the most heavily loaded regions of demolition shears. However, quenched and tempered high-strength steels are highly sensitive to the effects of the welding thermal cycle, which typically cause detrimental changes in the microstructure and mechanical properties of the heat-affected zone. The thermal cycles occurring during hardfacing differ from those typical of fusion welding, and consequently, the structure and mechanical properties of the resulting heat-affected zone may also vary. In addition, the penetration depth of the hardface layer can differ, which may significantly alter the load-bearing cross-section of the high-strength steel and, thus, the in-service behavior of the component. In the experimental work, hardfaced samples were performed on S690QL base material using different levels of heat input, thereby producing varying penetration depths. The aim of the study was to determine the effect of penetration depth on the resistance of the hardfaced component to dynamic loading. The tests were carried out at both +20 °C and –40 °C. The results clearly demonstrated that samples with deeper penetration exhibited reduced toughness at both investigated temperatures.
-
Determination of Different Parameters to High Strength Steel Clinch Joints by FEA
341-347Views:402In this article the clinched joints were analyzed by finite element method (FEA). The base materials were advanced high strength steels (DP 600, DP 800 and DP 1000). The model validation procedure was done by the DP 600 type of steel sheets; the other two types of steel were only simulated. The goal was to determine the geometrical properties of the joints with different strength steels. The FEA model was the same in every mechanical point of view therefore the results are comparable. The main geometrical parameters of the clinch joints are the neck thickness (tN), the undercut (C), the bottom thickness (tB) and the height of the protrusion (h); these values were compared.
-
Improvement of High Strength Automotive Steels Wettability Properties Using CO2 Laser Surface Treatment
422-427Views:269As a result of stricter environmental and safety standards, vehicle manufacturers have to reduce the weight of the vehicles, because 10% weight loss cause 8-10% reduction of fuel consumption. To reduce car’s weight and increase safety, vehicle manufacturers use high-strength steels. Further weight reduction can be achieved by using corresponding bonding technology (soldering, sticking) and optimizing these technologies can increase the strength of the joints. According to literature research, the improvement of interface properties has a large effect on bonding technologies. In order to improve interface properties, we can use multiple surface treatments. In our research we investigate the effects of CO2 laser surface treatment on high strength steels, because CO2 lasers are often used in the vehicle industry. In order to detect the effect of surface treatment, we investigate the wettability of the treated and untreated steels. In our research we measure the surface tension of treated and untreated steels. Our main goal is to improve wettability properties thus the bonding technology. In our research we used DP 600 high strength steel sheet with the thickness of 1 mm. We cut the steel sheet to 25mm wide and 55mm long workpieces. Before the surface treatment, the workpieces had to be cleaned and degreased using methanol. We searched for parameters that do not cause any visible changes on the surfaces. Among the parameters of the treatment we were able to change the output power of the laser. We used contact angle measurement to examine the wettability.
-
HAZ Characterization of Automotive DP Steels by Physical Simulation
478-487Views:354DP steels were extensively used in the vehicles industry due to its extraordinary combined properties of strength, ductility, formability and weldability which contributed great significance in reducing strength to weight ratio and CO2 emission. High strength steel i.e. DP steels (3 different grades) were experimentally investigated and thermophysically simulated using Gleeble 3500 simulator to determine softening and hardening in heat affected zone. Samples were heated to different peak temperatures (1350 °C, 950 °C, 775 °C and 650 °C), two cooling time (t8.5/5 = 5 s and 30 s) and Rykalin 2D model were selected. The hardness and microstructure of the specimens were tested and analysed. For longer cooling time (t8.5/5= 30 s), we observed that softening occurs in all grade of investigated DP steels to all sub-regions. But for shorter cooling time i.e. t8.5/5= 5 s the softening is higher in intercritical HAZ compared to other sub-regions for all the types of DP steel with short cooling time (t8.5/5 = 5 s). However, the hardening zone in the CGHAZ occurs when Tmax is 1350 ºC for DP600, DP800 & DP1000 steels but it is more prominent in DP800 as compared to others two steel grade.