Search

Published After
Published Before

Search Results

  • Ultrasonic Powder Atomization for Additive Manufacturing
    69-75
    Views:
    138

    The following article presents a special case of metal powder production, ultrasonic metal atomization. In this case, ultrasound technology is based on the capillary wave phenomenon. We verify the suitability of the produced powders for 3D metal printing with various tests. In the case of prints with a metal powder bed fusion (PBF), the properties of the raw material of the powder are extremely important. The main results of the tests carried out in the article (SEM images, EDS composition analysis, sieve analysis) were described.

  • Mechanical Testing of 3D Metal Printed Stainless Steel Specimens
    7-13.
    Views:
    90

    Additive manufacturing (AM) is a cutting-edge production method, which has come a long way since its first introduction in the ’80s. Back in the days its usage was very limited to stereolithography, and was only able to make weak structures, so it only worked for visualization. Four decades later it is one of the leading research fields in production areas, because of its flexibility and its ability to make almost any complex geometry. However, no matter how powerful it is, it is not omnipotent, there are certain size and shape restrictions even this method must apply to.

  • The Mechanical Properties of 3D Printed CuZn28 Brass Specimens with Different Orientations
    253-259
    Views:
    208

    In this paper, the properties of CuZn28 brass raw material were presented. The 3D printed metal specimens are made from this material with different orientations. Their mechanical properties (tensile strength, yield strength) and elongation were investigated according to MSZ EN 6892-1: 2012 standard. The strength of the different printing directions is analyzed and it is determined which printing direction is the most favourable. Finally, the effect of the different printing directions upon the structure of the material is studied.

  • Application of Topological Methods in the Development of Vehicle Components
    67-75
    Views:
    73

    Many areas of the industry are characterized by continuous changes, which define new directions of development in product design. The development of computers and software, the spread of modern production tools and the development of material technology make it possible to expand traditional production technologies with modern processes. Integrated CAD systems have occupied their place in the product design and development process for decades, reforming classical design methods. Popular optimization procedures in integrated CAD systems, such as shape optimization, topological optimization and the new generative design process, provide effective solutions for design engineers in more and more industrial application areas. Experience shows that modern design methods can be used in many areas of industry. The appearance of metal powder printing and additive technology make it possible to test the designed prototypes or even to produce the final products. The following article aims to support the above with the help of a case study.

Database Logos