Search
Search Results
-
Finite Element Software for Rubber Products Design
13-20Views:308Automotive rubber products are subjected to large deformations during working conditions, they often contact with other parts and they show highly nonlinear material behavior. Using finite element software for complex analysis of rubber parts can be a good way, although it has to contain special modules. Different types of rubber materials require the curve fitting possibility and the wide range choice of the material models. It is also important to be able to describe the viscoelastic property and the hysteresis. The remeshing possibility can be a useful tool for large deformation and the working circumstances require the contact and self contact ability as well. This article compares some types of the finite element software available on the market based on the above mentioned features.
-
Applicability of Optimization Methods in the Design of Automotive Rubber Products
358-363Views:154Size, shape or topology optimization are widely used to fulfil the requirements in the design process of rubber products. In many cases, the shape of the product is very complex and comes into contact with other components during operation. It is commonly subjected to large deformation for which the rubber shows strongly nonlinear behaviour. For this complex problem analytical solution is not available, thus finite element method could be used in which the analysis running is a time consuming process. The object of my research is to compare the efficiency and computational cost of different optimization algorithms. This article focuses on the applicability of various optimization methods in the field of automotive rubber goods. Direct search optimization and surrogate model optimization methods will be introduced.