Optimization of Parking Lot Stormwater Management: a Case Study
Author
View
Keywords
License
Copyright (c) 2025 Dilnaz Sagit

This work is licensed under a Creative Commons Attribution 4.0 International License.
How To Cite
Accepted 2025-06-11
Published 2025-06-17
Abstract
As urbanization accelerates, parking lots lead to stormwater runoff and localized flooding due to impervious layers and inefficient drainage. This case study evaluates stormwater management strategies across four parking lots in Debrecen, Hungary, to propose effective retrofitting solutions. The methodology combines visual site assessments with a comparative analysis of global best practices identified in the literature. Findings suggest integrating Green Infrastructure (GI) and Low Impact Development (LID) principles into parking lot design can enhance infiltration and significantly reduce surface runoff. Key recommendations include utilizing nearby vegetated depressions and replacing conventional concrete slabs with permeable surfaces. Beyond the flood avoidance, these strategies aim to reduce pressure on the local sewer system and minimize puddle formation.
References
- [1] United Nations, Department of Economic and Social Affairs, Population Division, “HYDE (2023) – with minor processing by Our World in Data,” Our World in Data, 2018. [Online]. Accessed: Feb. 05, 2025.
- [2] W. Ludwig, “Mass, Sitte und Technik des Bauens in Habuba Kabira Süd,” in Actes du colloque ‘Le Moyen Euphrate, zone de contacts et d'échanges’, J.-C. Margueron, Ed. Strasbourg, France: Univ. des Sciences Humaines de Strasbourg, 1977, pp. 63–74.
- [3] H. F. Gray, “Sewerage in ancient and medieval times,” Sewage Works J., vol. 12, no. 5, pp. 939–949, Sept., 1940.
- [4] W. Lindley, “Schlussbericht über die ausgeführten Sielanlagen zur Entwässerung der Stadt Hamburg,” Hamburg, Germany: Joh. Aug. Meissner, Dec. 6, 1845, 60 pp.
- [5] J.-L. Bertrand-Krajewski, “Integrated urban stormwater management: Evolution and multidisciplinary perspective,” J. Hydro-environ. Res., vol. 38, pp. 72–83, Mar., 2021.
- [6] M. J. Paul and J. L. Meyer, “The ecology of urban streams,” Annu. Rev. Ecol. Syst., vol. 32, pp. 333–365, Nov., 2001.
- [7] T. Croeser, G. E. Garrard, C. Visintin, et al., “Finding space for nature in cities: the considerable potential of redundant car parking,” npj Urban Sustain., vol. 2, Art. no. 27, 2022, doi: 10.1038/s42949-022-00073-x.
- [8] A. Daigneault, P. Brown, and D. Gawith, “Dredging versus hedging: Comparing hard infrastructure to ecosystem-based adaptation to flooding,” Ecol. Econ., vol. 122, no. 2, pp. 25–35, 2016, doi: 10.1016/j.ecolecon.2015.11.023.
- [9] F. K. S. Chan, J. A. Griffiths, D. Higgitt, S. Xu, F. Zhu, Y.-T. Tang, Y. Xu, and C. R. Thorne, “'Sponge City' in China—A breakthrough of planning and flood risk management in the urban context,” Land Use Policy, vol. 76, pp. 772–778, 2018, doi: 10.1016/j.landusepol.2018.03.005.
- [10] M. Clar, “Low Impact Development (LID) Technology for Ultra Urban Areas,” presented at Watershed Management Conf., 2003, pp. 163–174, doi: 10.1061/40706(266)15.
- [11] T. D. Fletcher, W. Shuster, W. F. Hunt, R. Ashley, D. Butler, S. Arthur, et al., “SUDS, LID, BMPs, WSUD and more – The evolution and application of terminology surrounding urban drainage,” Urban Water J., vol. 12, no. 7, pp. 525–542, 2014, doi: 10.1080/1573062X.2014.916314.
- [12] Z. Liao, H. Chen, F. Huang, and H. Li, “Cost–effectiveness analysis on LID measures of a highly urbanized area,” Desalination Water Treat., vol. 52, no. 4–6, pp. 1021–1030, 2014, doi: 10.1080/19443994.2014.964327.
- [13] Y. Zhang, W. Zhao, X. Chen, C. Jun, J. Hao, X. Tang, and J. Zhai, “Assessment on the effectiveness of urban stormwater management,” Water, vol. 13, no. 1, Art. no. 4, 2021, doi: 10.3390/w13010004.
- [14] W. Yang, K. Brüggemann, K. D. Seguya, E. Ahmed, T. Kaeseberg, H. Dai, P. Hua, J. Zhang, and P. Krebs, “Measuring performance of low impact development practices for the surface runoff management,” Environ. Sci. Ecotechnol., vol. 1, Art. no. 100010, 2020, doi: 10.1016/j.ese.2020.100010.
- [15] R. A. Tirpak, R. J. Winston, I. M. Simpson, J. D. Dorsey, A. G. Grimm, R. L. Pieschek, E. A. Petrovskis, and D. D. Carpenter, “Hydrologic impacts of retrofitted low impact development in a commercial parking lot,” J. Hydrol., vol. 592, Art. no. 125773, 2021, doi: 10.1016/j.jhydrol.2020.125773.
- [16] V. Andrés-Valeri, D. Castro-Fresno, L. Sañudo-Fontaneda, and J. Rodriguez-Hernandez, “Comparative analysis of the outflow water quality of two sustainable linear drainage systems,” Water Sci. Technol., vol. 70, no. 8, pp. 1341–1347, 2014, doi: 10.2166/wst.2014.382.
- [17] N. Zadehesmaeil, Sustainable Stormwater Management Using Green Infrastructure for Parking Lot Design in Kitchener and Waterloo Region, M.E.S. thesis, Dept. of Sustainability Management, Univ. of Waterloo, Waterloo, ON, Canada, 2019.
- [18] Credit Valley Conservation, IMAX Low Impact Development Infrastructure Performance and Risk Assessment, 1st ed., Mississauga, ON, Canada: Credit Valley Conservation, Jul. 2015. [Online]. Available: https://files.cvc.ca/cvc/uploads/2016/01/IMAX-Technical-Report.pdf (Accessed: Mar. 1, 2025).
- [19] D. Armson, P. Stringer, and A. R. Ennos, “The effect of street trees and amenity grass on urban surface water runoff in Manchester, UK,” Urban For. Urban Green., vol. 12, no. 3, pp. 282–286, 2013, doi: 10.1016/j.ufug.2013.04.001.
- [20] A. Berland, S. A. Shiflett, W. D. Shuster, A. S. Garmestani, H. C. Goddard, D. L. Herrmann, and M. E. Hopton, “The role of trees in urban stormwater management,” Landsc. Urban Plan., vol. 162, pp. 167–177, Jun. 2017, doi: 10.1016/j.landurbplan.2017.02.017.
- [21] Ather, S. Hussain. (2020, December 27). How To Calculate Surface Runoff. sciencing.com. Retrieved from https://www.sciencing.com/calculate-surface-runoff-6505227/
- [22] Goel, M.K. (2011). Runoff Coefficient. In: Singh, V.P., Singh, P., Haritashya, U.K. (eds) Encyclopedia of Snow, Ice and Glaciers. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2642-2_456
- [23] Massachusetts Low Impact Development Toolkit, https://megamanual.geosyntec.com/npsmanual
- [24] Jarden, K. M., Jefferson, A. J. and Grieser, J. (2015) “Assessing the effects of catchment‐scale urban green infrastructure retrofits on hydrograph characteristics,” Hydrological Processes. Wiley-Blackwell. doi: 10.1002/hyp.10736.
- [25] Mueller, G. D. and Thompson, A. M. (2009) “The Ability of Urban Residential Lawns to Disconnect Impervious Area from Municipal Sewer Systems1,” Journal of the American Water Resources Association. Wiley-Blackwell. doi: 10.1111/j.1752-1688.2009.00347.x.
- [26] Rossetto, Rudy & Lenti, Alessandro & Ercoli, Laura & Sebastiani, Luca & Joodavi, Ata. (2023). Infiltration performance evaluation of a 15-year-old concrete grid paver parking area (Italy). Blue-Green Systems. 5. 10.2166/bgs.2023.043.
https://doi.org/10.21791/IJEMS.2025.11.