Mechanical and Vehicle Engineering

Full-Scale Tests of Pipeline Girth Welds Under Complex Cyclic Internal Pressure and Static Bending Loading Conditions

Published:
April 30, 2023
Authors
View
Keywords
License

Copyright (c) 2023 Ahmad Yasser Dakhel, János Lukács

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

How To Cite
Selected Style: APA
Dakhel, A. Y., & Lukács, J. (2023). Full-Scale Tests of Pipeline Girth Welds Under Complex Cyclic Internal Pressure and Static Bending Loading Conditions. International Journal of Engineering and Management Sciences, 8(1), 76-82. https://doi.org/10.21791/IJEMS.2023.1.10.
Abstract

The critical elements of high-pressure hydrocarbon transporting pipelines are often the girth welds, which are subjected to complex loads. The aims of our research and this paper are to introduce our full-scale pipeline fatigue and burst tests applying cyclic internal pressure and superimposed external bending stress on girth welds, furthermore, attracting the importance and the applicability of the investigation results. A unique testing system was built to study the behaviour of pipeline girth welds under simultaneous loads. The tests were evaluated using video camera recordings, internal pressure vs. burst time functions and failure pressure values.

References
  1. Lukács J., Nagy Gy., Harmati I., Koritárné F. R. and Kuzsella Lné. K. Zs. (2012) Szemelvények a mérnöki szerkezetek integritása témaköréből. Miskolci Egyetem, Miskolc. ISBN 978-963-358-000-4
  2. Koncsik Zs. (2019) A szerkezetintegritás helye és szerepe az oktatásban és a kutatásban. Multidiszciplináris Tudományok, 9(4), 63-71. ISSN (on-line) 2786-1465, https://doi.org/10.35925/j.multi.2019.4.5
  3. Koncsik Zs. (2021) Szerkezetintegritási kutatások az Innovatív Anyagtechnológiák Tudományos Műhelyben. Multidiszciplináris Tudományok, 11(2), 372-379. ISSN (on-line) 2786-1465, https://doi.org/10.35925/j.multi.2021.2.49
  4. van Es S. H. J., Gresnigt A. M., Vasilikis D. and Karamanos S. A. (2016) Ultimate bending capacity of spiral-welded steel tubes – Part I: Experiments. Thin-Walled Structures, 102, 286-304. ISSN 0263-8231, https://doi.org/10.1016/j.tws.2015.11.024
  5. Pisarski H. and Punshon C. (2004) Integrity of Reduced Pressure Electron Beam Girth Welds for Deep Water Pipelines. Paper: Pipe 24, 4th International Pipeline Technology Conference, Ostend, May 2004. https://www.twi-global.com/technical-knowledge/published-papers/integrity-of-reduced-pressure-electron-beam-girth-welds-for-deep-water-pipelines-may-2004
  6. Spinelli C. M. and Prandi L. (2012) High Grade Steel Pipeline for Long Distance Projects at Intermediate Pressure. 7th Pipeline Technology Conference (ptc), Hannover, 28-30 March, 2012.
  7. Bastola A.,. Wang J., Shitamoto H., Mirzaee-Sisan A., Hamada M. and Hisamune N. (2016) Full- and small-scale tests on strain capacity of X80 seamless pipes. Procedia Structural Integrity, 2, 1894-1903. ISSN 2452-3216, https://doi.org/10.1016/j.prostr.2016.06.238
  8. Mahdavi H., Kenny S., Phillips R. and Popescu, R. (2013) Significance of geotechnical loads on local buckling response of buried pipelines with respect to conventional practice. Canadian Geotechnical Journal. 50(1), 68-80. ISSN (electronic) 1208-6010, https://doi.org/10.1139/cgj-2011-0423
  9. Rofooei F. R., Jalali H. H., Attari N. K. A. and Alavi M. (2012) Full-Scale Laboratory Testing of Buried Pipelines Subjected to Permanent Ground Displacement Caused by Reverse Faulting. 15th World Conference on Earthquake Engineering (15 WCEE), Lisbon, 24-28 September, 2012.
  10. Government of Hungary (May 2021) Hungary’s National Hydrogen Strategy – Strategy for the introduction of clean hydrogen and hydrogen technologies to the domestic market and for establishing background infrastructure for the hydrogen industry. https://kormany.hu/dokumentumtar/magyarorszag-nemzeti-hidrogenstrategiaja
Database Logos