Labour Economics - From the Technological Development Perspective
Author
View
Keywords
License
Copyright (c) 2024 József Boros
This work is licensed under a Creative Commons Attribution 4.0 International License.
How To Cite
Abstract
The impact of technological advancements on the labor market and innovation processes is a critically important research area. The aim of this study is to examine the emergence and frequency of technological innovations in scientific publications, with a particular focus on the Journal of Labour Economics from 2000 to 2020. The research employs content analysis methods, searching for eight different terms and expressions related to technological development (e.g., technology, artificial intelligence, machine learning) across 1405 articles. The study also analyzes the number of occurrences and annual publication trends of these terms. A total of 9469 instances were identified, indicating that in 64,7% of the cases, at least one technological term appeared. An analysis of annual trends reveals an increase in the usage of certain keywords (technology, artificial intelligence, and machine learning). In a smaller subset of articles, only 1%, technological terms were mentioned at least 50 times. The results suggest that although the topic of technological development plays a significant role in labor market research, the frequency of its appearance and the depth of analysis vary considerably. The increase in the appearance of technological terms is predominantly observed in the fields of artificial intelligence and machine learning. These findings are specific to a single journal, indicating the need for further research involving other labor market journals to ensure representativeness.
References
- Mokyr, J., Vickers, C., Ziebarth, L. (2015) ’The history of technological anxiety and the future of economic growth: Is this time different?’. Journal of Economic Perspectives, 29(3), pp. 31–50. DOI: 10.1257/jep.29.3.31
- European Commission (2017) ’Attitudes towards the impact of digitisation and automation on daily life’. Special Eurobarometer 460. Brussels: European Commission. https://ec.europa.eu/jrc/communities/sites/jrccties/files/ebs_460_en.pdf (letöltve: 2021.12.20.)
- Autor, D. H. (2015) ’Why are there still so many jobs? The history and future of workplace automation’. Journal of Economic Perspectives, 29(3), pp. 3–30. DOI: 10.1257/jep.29.3.3
- Acemoglu, D., Restrepo, P. (2018a) ’The race between man and machine: implications of technology for growth, factor shares, and employment’. American Economic Review, 108(6), pp. 1488–1542. DOI: 10.1257/aer.20160696
- Antón, J., Klenert, D., Fernández-Macías, E., Urzì Brancati, M. C., Alaveras, G. (2020) ’The labour market impact of robotisation in Europe’. Seville: European Commission, JRC121388, 1-36.
- Atack, J., Margo, R. A., Rhode, P. W. (2019) ’ “Automation” of manufacturing in the late nineteenth century: the hand and machine labor study’. Journal of Economic Perspectives, 33(2), pp. 51–70. DOI: 10.1257/jep.33.2.51
- Autor, D. H., Salomons, A. (2018) ’Is automation labor share-displacing? Productivity growth, employment, and the labor share’. Brooking Papers on Economic Activity, 2018(spring), pp. 1–63.
- Eurofound (2018) ’Game changing technologies: Exploring the impact on production processes and work’. Luxembourg: Publications Office of the European Union. 1-32.
- Marengo, L. (2019) ’Is this time different? A note on automation and labour in the fourth industrial revolution’. Journal of Industrial and Business Economics, 46(3), pp. 323-331. DOI:10.1007/s40812-019-00123-z
- Pratt, G. A. (2015) ’Is a Cambrian Explosion coming for robotics?’. Journal of Economic Perspectives, 29(3), pp. 51–60. DOI: 10.1257/jep.29.3.51
- Acemoglu. D., Autor, D. H. (2011) ’Skills, tasks and technologies: implications for employment and earnings’. In: Ashenlfelter, O., Card, D. (szerk.) ’Handbook of Labor Economics’. (Vol. 4B, 1043–1171). Amsterdam: North Holland. ISBN: 978-0-444-53452-1
- Acemoglu, D., Restrepo, P. (2018b) ’Low-skill and high-skill automation’. Journal of Human Capital, 12(2), pp. 204–231. DOI: 10.1086/697242
- Acemoglu, D., Restrepo, P. (2019) ’Automation and new tasks: how technology displaces and reinstates labor’. Journal of Economic Perspectives, 33(2), pp. 3–30. DOI: 10.1257/jep.33.2.3
- Autor, D. H., Levy, F., Murlane, R. J. (2003) ’The skill content of recent technological change: an empirical exploration’. Quarterly Journal of Economics, 118(4), pp. 1279–1333.
- Alpaydin, E. (2010) ’Introduction to Machine Learning’. MIT Press, Cambridge MA. ISBN:978-0-262-01243-0
- Hastie, T. Tibshirani, R. Friedman, J. (2009) ’The Elements of Statistical Learning: Data mining, Inference, and Prediction’. Springer, New York. DOI: https://doi.org/10.1007/978-0-387-21606-5
- Varian, H. R. (2014) ’Big Data: New Tricks for Econometrics’. Journal of Economic Perspectives, 28 (2), pp. 3-28. DOI: 10.1257/jep.28.2.3
- Mullainathan, S., Spiess, J. (2017) ’Machine Learning: An Applied Econometric Approach’. Journal of Economic Perspectives, 31(2), pp. 87-106. DOI: 10.1257/jep.31.2.87
- Agrawal, A., Gans, J. S., Goldfarb, A. (2019) ’Artificial Intelligence: The Ambiguous Labor Market Impact of Automating Prediction’. Journal of Economic Perspectives, 33(2), pp. 31-50. DOI: 10.1257/jep.33.2.31
- Elsevier (2021) ’Journal Metrics’. https://www.journals.elsevier.com/labour-economics (letöltve: 2021.12.20.)
- Aguirregabiria, V., Alonso-Borrego, C. (2001) ’Occupational structure, technological innovation, and reorganization of production’. Labour Economics, 8(1), pp. 43-73.
- Crifo, P. (2008) ’Skill supply and biased technical change’. Labour Econimcs 15(5), pp. 812-830.
- O’Mahony, M., Robinson, C., Vecchi, M. (2008) ’The impact of ICT on the demand for skilled labour: A cross-country comparison'. Labour Economics, 15(6), pp. 1435-1450.
- Yasar, M., Paul, C. J. M. (2008) ’Capital-skill complementarity, productivity and wages: Evidence from plant-level data for a developing country’. Labour Econimcs, 15(1), pp. 1-17.
- Borghans, L., Weel, B. T. (2004) ’Are computer skills the new basic skills? The returns to computer, writing and math skills in Britain’. Labour Economics, 11(1), pp. 85-98. DOI:10.1016/S0927-5371(03)00054-X
- Falk, M., Koebel, B. (2004) ’The impact of office machinery, and computer capital on the demand for heterogeneous labour’. Labour Economics, 11(1), pp. 99-117. DOI:10.1016/S0927-5371(03)00056-3
- Lee, S-H., Kim, J. (2004) ’Has the Internet changed the wage structure too?’. Labour Economics, 11(1) pp. 119-127.
- Bastgen, A., Holzner, C. L. (2017) ’Employment protection and the market for innovations’. Labour Economics, 46, pp. 77-93. DOI: 10.1016/j.labeco.2017.03.003
- Lordan, G., Neumark, D. (2018) ’People versus machines: The impact of minimum wages on automatable jobs’. Labour Economics, 52, pp. 40-53. DOI: 10.1016/j.labeco.2018.03.006
- Goos, M., Rademakers, E., Salomons, A., Willekens, B. (2019) ’Markets for jobs and their task overlap’. Labour Economics, 61, 101750. DOI: 10.1016/j.labeco.2019.101750
- Vries, G. J. D., Gentile, E., Miroudot, S., Wacker, K. M. (2020) ’The rise of robots and the fall of routine jobs’. Labour economics, 66, 101885. DOI: 10.1016/j.labeco.2020.101885
- Goller, D., Lechner, M., Moczall, A., Wolff, J. (2020) ’Does the estimation of the propensity score by machine learning improve matching estimation? The case of Germany’s programmes for long term unemployed’. Labour Economics, 65, 101855. DOI: 10.1016/j.labeco.2020.101855