Economics

Consumer Perception of Electric Cars in Hungary – Theoretical Considerations and Empirical Results

Published:
2022-10-14
Authors
View
Keywords
License

Copyright (c) 2022 Tamás Németh, László Kovács

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

How To Cite
Selected Style: APA
Németh, T., & Kovács, L. (2022). Consumer Perception of Electric Cars in Hungary – Theoretical Considerations and Empirical Results. International Journal of Engineering and Management Sciences, 7(2), 1-23. https://doi.org/10.21791/IJEMS.2022.2.1.
Received 2021-10-20
Accepted 2022-08-04
Published 2022-10-14
Abstract

Electric cars are becoming increasingly popular in the automotive industry and among consumers; partly as a result of their environmentally friendly characteristics. The aim of the study is to compare the main characteristics of electric and conventional cars in the context of environmental protection. In the first half of the study, we present the life cycle of electric and conventional cars and we compare the overall environmental impact traditional an electric vehicles. We point out that although the operation of an electric car does not pollute the environment locally, the manufacture, charging and disposal of batteries required for operation raises several issues related to environmental pollution. In the second part, we examine the respondents' attitudes towards electric cars based on our own questionnaire research. On the basis of the answers, it can be said that consumers still consider electric cars expensive and are aware that electric cars address some pollution issues to a small extent.

References
  1. Chan, C. C. (2013) ’The Rise & Fall of Electric Vehicles in 1828–1930: Lessons Learned’, Proceedings of the IEEE, 101(1), pp. 206-212. https://doi:10.1109/jproc.2012.2228370
  2. Ádám, K. É. (2018) ’A magyar autóipar az elektromos autó tükrében’. Prosperitas, 1, pp. 7-20.
  3. Szabó, L. (év nélkül) ’A villamos járművek története’.
  4. http://users.utcluj.ro/~szabol/Papers/ENELKO2010.pdf [2020.04.08.]
  5. Anderson, C. D., Anderson, J. (2010) ’Electric and hybrid cars: A history’. Jefferson, NC: McFarland & Company, Inc.
  6. Tu, C., J., Yang, C. (2019) ’Key Factors Influencing Consumers’ Purchase of Electric Vehicles’. Sustainability, 11(14), pp. 1-22.
  7. EV Volumes (2022). ’Global EV sales for 2021. https://www.ev-volumes.com/ [2022.04.20.]
  8. Carsale Database (2020) https://carsalesbase.com/
  9. ACEA (2020) ’New passenger cars by fuel type in the EU’.
  10. https://www.acea.be/statistics/tag/category/share-of-diesel-in-new-passenger-cars [2021.04.15.]
  11. Verkade, T. (2017). ’Why electric cars are always green (and how they could get greener)’.
  12. https://qz.com/1040956/why-electric-cars-are-always-green/ [2021.10.04.]
  13. International Council on Clean Transportation (2018) ’Effects of battery manufacturing on electric vehicle life-cycle greenhouse gas emissions’.
  14. https://theicct.org/sites/default/files/publications/EV-life-cycle-GHG_ICCT-Briefing_09022018_vF.pdf [2021.04.18.]
  15. Vidhi, R., Shrivastava, P. (2018) ’A Review of Electric Vehicle Lifecycle Emissions and Policy Recommendations to Increase EV Penetration in India’, Energies, 11(3): 483. DOI:10.3390/en11030483
  16. Pero, F. D., Delogu, M., Pierini, M. (2018) ’Life Cycle Assessment in the automotive sector: a comparative case study of Internal Combustion Engine (ICE) and electric car’. Procedia Structural Integrity, 12, pp. 521-537. https://doi:10.1016/j.prostr.2018.11.066
  17. Helmers, E., Dietz, J., Weiss, M. (2020) Sensitivity Analysis in the Life-Cycle Assessment of Electric vs. Combustion Engine Cars under Approximate Real-World Conditions. Sustainability, 12(3), 1241.
  18. Tang, B., Xu, Y., & Wang, M. (2022) ’Life Cycle Assessment of Battery Electric and Internal Combustion Engine Vehicles Considering the Impact of Electricity Generation Mix: A Case Study in China’, Atmosphere, 13(2), 252.
  19. Pipitone, E., Caltabellotta, S., Occhipinti, L. (2021) ’A Life Cycle Environmental Impact Comparison between Traditional, Hybrid, and Electric Vehicles in the European Context’. Sustainability, 13(19), 10992. doi:10.3390/su131910992
  20. Szűcs, G. (2020) ’Melyik elektromos autó kaphat 2,5 milliós állami támogatást?’
  21. https://villanyautosok.hu/2020/05/20/melyik-elektromos-auto-kaphat-25-millios-allami-tamogatast/ [2020.10.16.]
  22. Musonera, E., Cagle, C. (2019) ’Electric Car Brand Positioning in the Automotive Industry: Recommendations for Sustainable and Innovative Marketing Strategies’. Journal of Strategic Innovation and Sustainability, 14(1), pp. 120-133. https://doi:10.33423/jsis.v14i1.991
  23. ’E-On lakossági áram árak’ (2020) https://www.eon.hu/hu/lakossagi/aram/arak.html [2020.10.16.]
  24. Kóti, G. (2022) ’Drágul a töltés az E.ON, az ELMŰ és a Mobiliti töltőoszlopain’.
  25. https://alapjarat.hu/e-autok/dragul-toltes-az-eon-az-elmu-es-mobiliti-toltooszlopain [2022.04.20.]
  26. ’Global Fuel Prices, (2022) https://www.globalpetrolprices.com/data/
  27. Innovációs és Technológia Minisztérium (2019) ‚Hazai elektromobilitási
  28. stratégia‘. Budapest: Innovációs és Technológia Minisztérium.
  29. Gerse, J. (2020) ’Felvillanyozva: az elektromos autók töltőhálózatának terjedése Magyarországon’. Területi Statisztika, 60(4), pp. 461-476. https://doi:10.15196/ts600403
  30. Eurostat (2018) ’EU production of electricity by source, 2018.’ [online] Elérhető: https://ec.europa.eu/eurostat/cache/infographs/energy/bloc-3b.html [2020.08.25.]
  31. Molnár, Cs. (2017) ‚Halk kipufogás: nem is olyan zöldek az elektromos autók, mint hitte‘. https://magyarnemzet.hu/archivum/tudomany-es-technika/halk-kipufogas-nem-is-olyan-zoldek-az-elektromos-autok-mint-hitte-3887031/ [2020.10.10.]
  32. Dincer, I., Rosen, M. A., Zamfirescu, C. (2010) ’Economic and Environmental Comparison of Conventional and Alternative Vehicle Options’. In: Pistoia, G. (ed.) Electric and Hybrid Vehicles. Amsterdam et al.: Elsevier. pp. 1-17. https://doi:10.1016/b978-0-444-53565-8.00001-4
  33. Knobloch, F. et al. (2020) ’Net emission reductions from electric cars and heat pumps in 59 world regions over time’. Nature Sustainability, 3, 437-447 https://doi.org/10.1038/s41893-020-0488-7
  34. U.S. Departement of Energy (2021). ’Where the Energy Goes: Electric Cars’. https://www.fueleconomy.gov/feg/atv-ev.shtml [2021.04.18.]
  35. Katona, M. (2017). Mibe kerül egy villanyautó karbantartása? [online] Elérhető: https://www.autonavigator.hu/cikkek/mibe-kerul-egy-villanyauto-karbantartasa/ [2020.10.17.]
  36. Lienert, P., Carey, N. & Shirouzu, N. (2022) ’Inside China's electric drive for swappable car batteries’.
  37. https://www.reuters.com/business/autos-transportation/inside-chinas-electric-drive-swappable-car-batteries-2022-03-24/ [2022.04.19.]
  38. ’Directive 2000/53/ec of the European Parliament and of the Council of 18 September 2000 on end-of life vehicles’
  39. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02000L0053-20200306&qid=1612780493569 [2022.04.20.]
  40. ’Commission staff working document evaluation of Directive (EC) 2000/53 of 18 September 2000 on end-of-life vehicles’
  41. https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52021SC0060&rid=5 [2022.04.20.]
  42. Varga, A., Varga, Z., Gyenge, Z. (2004) ’A kolozsvári gépkocsi bontó cégek tevékenységének felmérése’. Fiatal Műszakiak Tudományos Ülésszaka, 1. pp. 255-262. https://doi:10.36243/fmtu-2004.60
  43. Antalóczy Zs. (2018) ’Mi történik az elhasználódott elektromos autó-akkumulátorokkal?’
  44. https://villanyautosok.hu/2018/09/23/mi-tortenik-az-elhasznalodott-elektromos-auto-akkumulatorokkal/ [2020.10.10.]
  45. Jiao, N., Evans, S. (2018) ’Business Models for Repurposing a Second-Life for Retired Electric Vehicle Batteries’. In: Pistoia, G., Liaw, B. (eds.) Behaviour of Lithium-Ion Batteries in Electric Vehicles. Cham: Springer. pp. 323-344. https://doi:10.1007/978-3-319-69950-9_13
  46. Bundesamt (2022) ’Gesetz über das Inverkehrbringen, die Rücknahme und die umweltverträgliche Entsorgung von Batterien und Akkumulatoren’ (Batteriegesetz - BattG).
  47. https://www.gesetze-im-internet.de/battg/BJNR158210009.html [2022.04.21.]
  48. Elwert, T., Römer, F., Schneider, K., Hua, Q., Buchert, M. (2018) ’Recycling of Batteries from Electric Vehicles’. In: Pistoia, G., Liaw, B. (eds.) Behaviour of Lithium-Ion Batteries in Electric Vehicles. Cham: Springer. pp. 289-323. https://doi:10.1007/978-3-319-69950-9_12
  49. Mitropoulos, L. K., & Prevedouros, P. D. (2018) ’Conventional, Battery-Powered, and Other Alternative Fuel Vehicles: Sustainability Assessment’. In: Pistoia, G.’ Liaw, B. (eds.) Behaviour of Lithium-Ion Batteries in Electric Vehicles. Cham: Springer. pp. 101-127. https://doi:10.1007/978-3-319-69950-9_5
  50. Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit (2017) ’Wie umweltfreundlich sind Elektroautos?’ https://www.bmu.de/fileadmin/Daten_BMU/Pools/Broschueren/elektroautos_bf.pdf
  51. KSH (2022) ’A személygépkocsi-állomány átlagos kora gyártmányok szerint’
  52. https://www.ksh.hu/stadat_files/sza/hu/sza0026.html [2022.04.19.]
  53. Pais R. (2013) ’Alapvetések a Z generáció tudománykommunikációjához’. Pécs: Pécsi Tudományegyetem. https://ktk.pte.hu/sites/ktk.pte.hu/files/images/szervezet/intezetek/mti/pais_alapvetesek_a_z_generacio_tudomany-kommunikaciojahoz_-_tanulmany_2013.pdf [2021.04.18.]
  54. Törőcsik M., Szűcs K. (2021) ’Fogyasztói magatartás – Mintázatok, trendek, alkalmazkodás’. Budapest: Akadémiai.
  55. Lewis, S. (2020) ’Generation woke? Over 55s most likely to recycle, study shows.’
  56. https://www.aviva.co.uk/aviva-edit/in-the-news-articles/generation-woke-over-55s/ [2021.04.18.]
  57. Lebeau, K., Mierlo J. V., Lebeau P., Maresse O., Macharis C. (2013) ‚Consumer attitudes towards battery electric vehicles: a large-scale survey’. International Journal of Electric and Hybrid Vehicles, 5(1), 28-41.
  58. https://doi.org/10.1504/ijehv.2013.053466
  59. Shaheen, S., A., Martin, E., Lipman, E., T. (2008) ’Dynamics in Behavioral Response to Fuel-Cell Vehicle Fleet and Hydrogen Infrastructure: An Exploratory Study’. Institute of Transportation Studies, 2058(1). pp. 155-162.
  60. https://doi.org/10.3141/2058-19
  61. Deloitte (2020) ’Global Automotive Consumer Study. Is consumer interest in advanced automotive technologies on the move?’
  62. https://www2.deloitte.com/content/dam/Deloitte/us/Documents/manufacturing/us-2020-global-automotive-consumer-study-global-focus-countries.pdf [2021.04.18.]
  63. Baik, Y., Hensley, R., Hertzke, P., Knupfer, S. (2019) ’Making electric vehicles profitable.’
  64. https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/making-electric-vehicles-profitable [2021.04.08.]
  65. Haugneland, P., Hauge, E. (2015) ’Norwegian electric car user experiences’ 2014. World Electric Vehicle Journal, 7(4), 650-658. https://doi:10.3390/wevj7040650
  66. Kék Bolygó Alapítvány (2021) ’Motorizáció és e-mobilitás’.
  67. https://kekbolygoalapitvany.hu/wp-content/uploads/2021/11/Motorizacio-es-e-mobilitas_20211102.pdf [2022.04.21.]
  68. Preston, B. (2020) ’Consumer Reports Survey Shows Strong Interest in Electric Cars’.
  69. https://www.consumerreports.org/hybrids-evs/cr-survey-shows-strong-interest-in-evs/ [2021.04.17.]
  70. YouGov (2020) ‚E-Auto-Studie: Europa vor dem Umstieg?‘
  71. https://yougov.de/news/2020/09/23/e-auto-studie-europa-vor-dem-umstieg/ [2021.04.17.]
  72. Singer, M. (2016) ’Consumer Views on Plug-in Electric Vehicles – National Benchmark Report. U.S. Department of Energy Office of Energy Efficiency & Renewable Energy’. https://doi.org/10.2172/1238321
  73. Vins, M., Kosova, S. (2020) ‚Here comes the electric car: Delving into young czech consumers' motivations in buying an electric car‘. Perner's Contacts, 15(2).
  74. Kowalska-Pyzalska, A., Kott, M., Kott, J. (2021) ’How Much Polish Consumers Know about Alternative Fuel Vehicles? Impact of Knowledge on the Willingness to Buy’. Energies, 14, 1438. https://doi.org/10.3390/en14051438
  75. PWC (2018) ’Five trends transforming the Automotive Industry’
  76. https://www.pwc.at/de/publikationen/branchen-und-wirtschaftsstudien/eascy-five-trends-transforming-the-automotive-industry_2018.pdf [2021.04.17.]
  77. Schiller, T., Kummer, P., Berdichevskiy, A., Weidenbach, M. & Sadoun J. (2020) ’Future of Automotive Sales and Aftersales’. Deloitte.
  78. https://www2.deloitte.com/za/en/pages/consumer-business/articles/future-of-car-sales-in-2035.html [2021.04.17.]
  79. Hader, M., Bauer S. (2020) ’How Hyundai is positioning itself as a relevant player in the UAM market’
  80. https://www.rolandberger.com/en/Insights/Publications/Urban-Air-Mobility-Shaping-the-future-of-mobility.html [2021. 04.18]
  81. Luhby, T., Lobosco K. & Sullivan, K. (2021) ’Here's what's in Biden's infrastructure proposal’. https://edition.cnn.com/2021/03/31/politics/infrastructure-proposal-biden- explainer/index.html [2021.04.18.]
  82. Portfolio (2021) ’Félelmetes lobbierő mozdult meg a benzines autók betiltásáért’
  83. https://www.portfolio.hu/global/20210416/felelmetes-lobbiero-mozdult-meg-a-benzines-autok-betiltasaert-479036 [2021.04.18]
Database Logos