Search

Published After
Published Before

Search Results

  • Néhány időjárási tényező és a hozam összefüggése száraz- és üde gyepeken
    39-42
    Views:
    128

    The yield of pastures will be impaired by the climate change as a result of reduced amount of winter and vegetation precipitation and the increasing number of hot days as well as the increase in temperature. Species composition is also due to change, however, this change will be more difficult to be determined as the increasing concentration of glasshouse gases has different impacts on the various components. Grassland is a water demanding culture; droughts reduce yield significantly and these losses should be compensated by an adaptive agricultural technology. On protected and Nature 2000 pastures, comprising giving 50% of Hungarian pastures – strict regulations prevent the application of yield increasing techniques, such as irrigation, fertilization or oversowing. The impacts of the weather may only be compensated to a certain extent by the utilization technology. The effects of 3 utilization systems and some elements of weather conditions with special regard to water supply were investigated on dry and mesic grasslands in the years 2006-2010. On the bases of the results some suggestions are set up for modifying the specifications on pasture utilization in nature conservation areas, by having the first cutting earlier and increasing utilization frequency wherever possible. On dry grasslands, yield was affected most significantly by annual precipitation, the precipitation in the vegetative period showed the second strongest correlation with yield. On mesic pastures, temperature and radiation had the strongest influence on the yield. Here, the significance level in the case of total annual precipitation was lower, whereas the correlation was not significant for precipitation in the vegetative period.

  • A hasznosítási gyakoriság és az időjárás hatása száraz és üde fekvésű gyepek takarmány-minőségére
    43-47
    Views:
    165

    Irrigating pastures is a viable option only in a few selected areas in Hungary, even though pasture is a water demanding culture. Species composition will be impacted by the climate change, reduced winter and spring precipitation and the increasing number of hot days as well as the rise in temperature. Coverage by dicots and C4 grasses will increase, resulting in a change in feed quality. Yield losses and deteriorating quality should be compensated by an adaptive agricultural technology. We examined the impacts of 3 utilization technologies and seasonal weather conditions on dry and mesic pastures in the years 2006-2010. Results indicated a significant difference in feed quality and factors determining nutrient content caused by water supply. On the dry pasture, humidity had a significant and substantial negative impact (highest significance, highest r-value) whereas the mesic pasture was essentially affected by precipitation. On the mesic pasture, high temperatures, strong radiation and high amounts of precipitation all had negative impacts on the digestibility and metabolisable energy content of grass. Crude protein contents showed strong correlation only with annual precipitation. 

  • The effect of fertilization on the yield and N uptake of artificial grasslands 1.
    36-45
    Views:
    67

    The effects of different N, P and K supply levels and their combinations on the development, yield and N-uptake of an established all-grass sward were examined in the 28th year of a long-term fertilization experiment set up on a calcareous chernozem soil. The soil of the growing site contained around 3% humus, 5% CaCO3, 20-22% clay in the ploughed layer and was originally moderately well supplied with available K, Mg, Mn and Cu and poorly supplied with P and Zn. The trial included 4Nx4Px4K=64 treatments in 2 replications, giving a total of 128 plots. The fertilizers applied were Ca-ammonium nitrate, super phosphate and potassium chloride. The groundwater table was at a depth of 13-15 m and the area was prone to drought. In 2001, however, the area had a satisfactory amount of 621 mm precipitation with a fairly good distribution. The grass was established on 21. September 2000. The main results and conclusions can be summarised as follows:
         1. Grass herbage had a very favourable wet year in 2001 with over 700 mm rainfall during the total vegetation period. The hay yield of unfertilised control plots was by the 1st cut 1.7 t/ha, by the 2nd cut 1.2 t/ha, while the N3P3K3 treatment gave 8.8 t/ha and 4.2 t/ha resp., so NPK fertilization increased the air-dried hay yield from 3 t/ha to 13 t/ha (1st+2nd cuts together).
         2. The N-requirement of the young grass was moderate while the P-response significant by the 1st cut. The optimum P-supply was at the 150 mg/kg ammonium lactate soluble AL-P2O5 in the plow layer. There were no K-responses on this soil with 135 mg/kg AL-K2O values.
         3. There were no P responses any more by the 2nd cut even on the low P-supply soil, with 66 mg/kg AL-P2O5 value, while the applied N increased the hay yield 4 times. The optimum N content in the hay, leading to maximum yield, amounted 2% by the 1st cut and 2.5-3.0% at the 2nd cut. Applied N decreased air-dried content at the 1st cut from 33% to 31%, at the 2nd cut from 27% to 21%.
         4. On the soil, well supplied with PK, the 100 kg/ha/yr N treatment gave the maximum hay surpluses: at the 1st cut 61 kg, at the 2nd cut 14 kg, that is a total of 75 kg hay/kg N applied. The 200 kg/ha/yr plots yielded 43 kg, 300 kg/ha/yr yielded 34 kg hay/kg N applied. The primary sward hay had 0.34% NO3-N in the 300 kg/ha/yr treatment, which was over the allowable 1.25% NO3-N limit for animal foodstuff. The NO3-N content in the N-control plots amounted 0.06%, in the 100 kg/ha/yr treatment 0.10%, in the 200 kg/ha/yr treatment 0.22%. At the 2nd cut the hay had generally, half as high NO3-N content as in the 1st cut hay in all treatments.
         5. The apparent recovery of applied N, using difference method, was even more than 100% on the well supplied with PK soil suggesting that in these instances grass herbage could make a good use of soil NO3-N pool accumulated in soil during the previous period and not used by the crops.

  • The effects of fertilization on 2 year old established swards. Quality and nutrient yields 8.
    119-128
    Views:
    61

    The effects of different N, P and K supply levels and their combinations were examined on the quality nutritional values and nutrient yield of an established 2 year old all-grass sward in the 29th year of a long-term fertilization field experiment set up on a calcareous chernozem soil. The soil of the growing site contained around 3% humus, 3-5% CaCO3, 20-22% clay in the ploughed layer and was originally moderately well supplied with available N, K, Mg, Mn and Cu and poorly supplied with P and Zn. The trial included 4Nx4Px4K=64 treatments in 2 replications, giving a total of 128 plots. The fertilizers applied were Ca-ammonium nitrate, superphosphate and potassium chloride. The groundwater table was at a depth of 13-15 m and the area was prone to drought. In 2002, the area had 401 mm precipitation and gave 2 cuts of grass. The 1st year results of the trial were published earlier (Kádár, 2005a, b). The main conclusions can be summarised as follows:
    1. The N-responses were decisive for both the hay quality and the hay and nutrient yields. The N-fertilizer increased the crude protein content and diminished the same time the crude fibre, crude ash and total sugar contents in the hay. The P-responses were not significant while the K-fertilization stimulated the crude ash accumulation in both cuts.
    2. The hay yield of 2 cuts in 2002 amounted to 1,7 t/ha on the N0P0K0 plots not receiving any fertilizer during the 29 experimental years, while on the maximum N3P3K3 supply levels figured out 8.7 t/ha. The same time here the crude fibre increased from 532 kg/ha to 2876 kg/ha, crude protein from 113 kg/ha to 1100 kg/ha, crude ash from 132 kg/ha to 672 kg/ha, crude fat from 39 kg/ha to 173 kg/ha, while the crude fibre/crude protein ratio dropped from 4.7 to 2.6.
    3. After 3 years storing the decisive part of carotine decomposed in the hay and gave as little as 0.9 mg/kg average value. The N-control gave 0.6 mg/kg, the 200 kg/ha/yr N-treatment resulted in 1.3 mg/kg, than the N-excess 300 kg/ha/yr plots showed again significantly less 0.9 mg/kg.
    4. The 2nd cut hay had a little yield however, was rich in crude protein and crude ash having 50-70% higher average content compared with the primary hay. The crude fat content was 3-times higher in the 2nd cut hay, while the crude fibre about 20% less. The ratio of crude fibre/crude protein figured as an average 1.9, while in the low-quality primary hay amounted 4.2.
    5. The N-fertilization depressed the content of N-free extract and acid detergent fibre (ADF) and enhanced the content of energy dependent protein (MFE), N-dependent metabolic protein (MFN) and nettoenergy (NE) parameters. The P fertilization did not cause any changes, while the K-fertilization decreased the N-free extract and the nettoenergy parameters (NE) and slightly stimulated the neutral detergent fibre (NDF) synthesis in the 2nd cut hay.

  • The effects of fertilization on 2 year old established swards. Mineral uptake 7.
    107-118
    Views:
    52

    The effects of different N, P and K supply levels and their combinations were examined on the mineral element uptake of an established 2 year old all-grass sward in the 29th year of a long-term fertilization field experiment set up on a calcareous chernozem soil. The soil of the growing site contained around 3% humus, 3-5% CaCO3, 20-22% clay in the ploughed layer and was originally moderately well supplied with available N, K, Mg, Mn and Cu and poorly supplied with P and Zn. The trial included 4N×4P×4K=64 treatments in 2 replications, giving a total of 128 plots. The fertilizers applied were Ca-ammonium nitrate, superphosphate and potassium chloride. The groundwater table was at a depth of 13-15 m and the area was prone to drought. In 2002 the area had 401 mm precipitation and gave 2 cuts of grass. The lay-out and method of the trial as well as the fertilizer responses on the hay yield and element content were published earlier (Kádár 2006). The main conclusions drawn as follows:
    1. While the hay yield was basically determined by N-fertilization which lifted the hay mass 5 times compared to the N-control, the uptake of elements was drastically modified through the N×K and N×P synergistic and antagonistic interactions.
    2. As a function of N×K treatments the uptake K changed for example at the 1st cut between 23-198 kg/ha, at the 2nd cut between 9-80 kg/ha. At the same time the uptake of Na fluctuated between 0.05-7.15 kg and 0.4-4.4 kg/ha, that of Mo 0.4-3.2 g/ha and 0.2-2.3 g/ha resp. As a function of N×P treatments the uptake of P changed at the 1st cut between 3-14 kg/ha, Sr between 12-388 g/ha, Mo between 0.5-4.5 g/ha. The nutrient accumulation at the 2nd cut showed an analogical picture.
    3. The K-fertilization stimulated accumulation of K and Ba, while inhibited the antagonistic metal cations’ uptake of Ca, Mg and Na. The increased P-supply rose the absorption of P, S, Sr and Ba while diminished the extracted amount of Mo, which dropped down by 1/3rd compared with the control. The liberal N-supply stimulated the incorporation of N, K, Mn, Sr and Cu resulting an increase of an order of magnitude.
    4. Between the two extreme supply levels (N0P0K0 and N3P3K3) there were found extreme differences in element uptake in 2002 as follows: 34-302 kg/ha K, 15-168 kg/ha N, 8-35 kg/ha Ca, 5-22 kg/ha S, 4-22 kg/ha P (9-51 kg/ha P2O5) and 3-14 kg/ha Mg. The incorporated Mn, Sr, Zn and Cu enhanced an order of magnitude on N3P3K3 plots compared to the N0P0K0 absolute control. Uptake of As, Cd, Co, Cr, Hg, Pb and Se left behind the detection limit of 1 g/ha.
    5. To have 1 t air-dry hay it was used by grasses 17-35 kg K, 9-19 kg N, 3-5 kg Ca, 2.0-2.5 kg S, 1.3-2.5 kg P (3.0-5.7 kg P2O5), 1.4-1.9 kg Mg, 170-980 g Na, 90-170 g Fe, 60-120 g Mn and Al, 10-50 g Sr, 7-25 g Zn, 3-6 g Ba, B and Cu, 0.3-1.3 g Mo and 0.4-0.9 g Ni. Data illustrate the nutrient turnover of a grassland and may be used for assessing the nutrient demand of all-grass sward.

  • The effects of fertilization on 2 year old established swards. Yield and mineral content 6.
    94-106
    Views:
    58

    The effects of different N, P and K supply levels and their combinations were examined on the hay yield and mineral element content of an established 2 year old all-grass sward in the 29th year of a long-term fertilization field experiment set up on a calcareous chernozem soil. The soil of the growing site contained around 3% humus, 3-5% CaCO3, 20-22% clay in the ploughed layer and was originally moderately well supplied with available N, K, Mg, Mn and Cu and poorly supplied with P and Zn. The trial included 4N×4P×4K=64 treatments in 2 replications, giving a total of 128 plots. The fertilizers applied were Ca-ammonium nitrate, superphosphate and potassium chloride. The groundwater table was at a depth of 13-15 m and the area was prone to drought. In 2002, the area had 401 mm precipitation and gave 2 cuts of grass. The 1st year results of the trial were published earlier (Kádár, 2005a, b). The main conclusions can be summarised as follows:
    1. As a function of N×P fertilization the two cuts of the hay yield made up 1.4-8.0 t/ha while the green herbage 5.0-24.0 t/ha. The N-fertilization was of vital importance, which increased the hay mass 5 times. The P-response was moderate in the 1st, cut while there were no K-responses at all on this soil with 135 mg/kg ammoniumlactate (AL) soluble K2O values in plough layer.
    2. On those plots well supplied with PK the 100 kg/ha/yr N-treatment gave a total of 48 kg surplus hay/kg N applied. The 200 kg/ha/yr N-treatment yielded 11 kg, while the 300 kg/ha/yr N-treatment yielded 4 kg surplus hay/kg N applied. The NO3-N content of the 1st cut hay increased over permitted 0.25% level when using the maximum N-rate and made up this NO3-N form 26% of the total-N pool. The optimum PK-supplies in this site seems to be about 130-150 mg/kg AL-P2O5 and AL-K2O in plow layer with 200 kg/ha/yr N applied.
    3. N-fertilization enhanced the content of N, K, Mg, Na, Mn, Cu and NO3-N, while the concentration of S, P, Al, Fe, B and Mo dropped in the primary hay. The increasing P-supply stimulated the uptake of P, Ca, Mn, Sr and Ba, while hinderned the uptake of S and Mo. The K-fertilization rose the content of K and Ba and diminished the concentration of Mo and the antagonistic metal cations like Ca, Mg and Na.
    4. The NPK fertilization-induced Mo-deficiency can first of all jeopardized the fodder quality in this site. On the unfertilized plots the hay showed around 1.0 mg Mo /kg D.M., while on the N3P3K3 plots 0.1-0.2 mg/kg D.M. The P/Mo ratio lifted from 2-4 thousand up to 20 thousand. In the 2nd cut this phenomena partly disappeared, while developed the P-Zn antagonism. On P-control plots measured 15 mg/kg Zn
    94
    GYEPGAZDÁLKODÁSI KÖZLEMÉNYEK, 2006/4.
    dropped to 10 mg/kg while the P/Zn ratio rose from 167 up to 364.
    5. The 2nd cut hay had a little yield, yet was rich in minerals having 30-50% higher average element content compared with the primary hay. However the N, Al, Fe and Mo showed 2-times higher concentrations in the 2nd cut hay. There were found extra large, 25-fold differences in hay Na content as a function of N×K supply levels under synergetic effect of N and antagonistic effect of K treatment.
    6. Summarizing the above we can state that the long-term fertilization may drastically change the content and ratios of elements built in hay through synergetic or antagonistic effects. In the air-dried 1st cut hay for example, the minima-maxima concentrations of measured elements varied as follows: N 0.7-3.0%, K 1.3-3.0%, Ca 0.3-0.5%, Mg 0.13-0.21%, S 0.15-0.32%, P 0.10-0.32%; Na 50-1400, Mn 60-120, Al 50-120, Fe 70-140, Sr 8-170, Zn 6-40, Ba and B 3-6, Cu 2.5-5.5, Ni 0.4-1.4, Mo 0.1-1.0 mg/kg.