Search
Search Results
-
Survival Analysis of Hungarian Large White, Duroc and Pietrain Sows
31-36Views:273The aim of the present study was to perform lifetime performance analysis in three pig breeds; Hungarian Large White (n=295), Duroc (n=76) and Pietrain (n=91) on a commercial farm using analysis of survival sows. We took into consideration the age of sows at the time of their inclusion into breeding, their age at the time of culling, time spent in production, number of mating and parities, parity percentage, intervals between litters, number and mean of piglets born alive and born dead, number of raised piglet litters, number and mean of 21 days old piglets, the weight and mean of raised litter and raise percentage.
We carried out the analysis by SPSS 22.0. Single factor analysis of variants, Kaplan-Meier analysis and Cox PH model were used. The determination of the significance of risk rates differences was done by Wald chi square test.
Our results showed that the average culling age were 1056 (±33.52) days for the Hungarian Large White, 735 (±73.56) days for Duroc and 818 (±71.98) days for the Pietrain.
The log rank test of the survival analysis indicated a significant difference between the three tested genotypes (χ2=16.981, P<0.001), which means that the survival percentage of the individual breeds varied significantly from one another. In comparison with the Hungarian Large White genotype the Duroc genotype has a 1.6 times higher (P<0.001) culling risk while that of the genotype Pietrain was 1.36 times higher (P<0.001).
Our results can be used to compare the breeds kept under the same conditions and to compare the life span of one genotype under different farming conditions. Factors that increase survival and improve the profitability of pig farming can be determined by this method.
-
Study of animal welfare status in dairy cow herds in Hungary – looking for causes of lameness
25-29Views:146In the last 20-30 years, lameness in cattle was found to be third the most influential disease next to mastitis and reproduction disorders. Studies have been established to explore reasons for lameness and prevention. The problem with more robust prevention plans is that knowledge and research evidence is not strong enough to run an effective prevention plan. The aim of the research is to look for reasons of lameness by observing number of cows on 6 farms during 2 lactations. Performance data will be put together to body condition score (BCS) and lameness scores. Other examination is focused on monitoring of 40 farms. This part of the project is more related to extension, collecting and sharing solutions for decreasing lameness. Producers are advised what kind of measures are possible to reduce occurrence of lameness. Effectiveness of those actions will be measured at the end of the study. The first preliminary results show lack in almost all preventive measures needed to be taken in minimizing lameness. Those areas are related to poor facilities, lack of straw, problems with labor and basic management.
-
Study of animal welfare status in dairy cow herds in Hungary – looking for causes of lameness
47-50Views:198In the last 20–30 years lameness in cattle was found to be third the most influential disease next to mastitis and reproduction disorders. Studies have been established to explore reasons for lameness and prevention. The problem with more robust prevention plans is that knowledge and research evidence is not strong enough to run an effective prevention plan. The aim of the research is to look for reasons of lameness by observing number of cows on 6 farms during 2 lactations. Performance data will be put together to body condition score (BCS) and lameness scores. Other examination is focused on monitoring of 40 farms. This part of the project is more related to extension, collecting and sharing solutions for decreasing lameness. Producers are advised what kind of measures are possible to reduce occurrence of lameness. Effectiveness of those actions will be measured at the end of the study. The first preliminary results show lack in almost all preventive measures needed to be taken in minimising lameness. Those areas are related to poor facilities, lack of straw, problems with labour and basic management.
-
Economic questions of maize production on different soil types
289-292Views:117The requirements and objective of cultivation are in constant change. For example, different cultivation systems are developed for the purpose of soil protection, the preservation of its moisture content and on soils with various precipitation supply or production site conditions. Traditionally, one of the most important cultivation aims is crop needs. Further cost saving in fertilisation and crop protection can only be achieved by reducing the quality and quantity of production or it cannot be achieved at all. Furthermore, the costs can be significantly reduced by means of the rationalisation of cultivation. Energy and working time demand can also be notably reduced if ploughing is left out from the conventional tillage method. The key requirement of economicalness is to perform the cultivation at the optimal date, moisture level and the lowest possible cost.
Within production costs, the cost of cultivation is between 3–17%, while they are between 8–36% within machinery costs. It is the vital condition the usability of each technological method to progressively reduce costs. Our evaluation work was carried out with the consideration of the yield data obtained from cooperating farms and the experiment database of the Institute for Land Utilisation, Regional Development and Technology of the Centre for Agricultural and Applied Economic Sciences of the University of Debrecen. Three technological methods (ploughing, heavy cultivator and loosening tillage) were used on several soil types which differ from in terms of cultivability (chernozem, sandy and sandy clay soils) from the economic/economical aspect. We examined the sectoral cost/income relation of maize production as an indicator plant. The maize price during the analytical period was 45 thousand HUF per t. On chernozem soils, the production of maize can be carried out on high income level, while maize production on sandy soils has a huge risk factor. The role of cultivation is the highest on high plasicity soils, since they have a huge energy
demand and the there is a short amount of time available for each procedure in most cases. -
The importance of millet production in regional production, with special emphasis on climate change
141-146Views:185Regional production is a traditional production structure developed adjusting to the geographical, climatic, biological and soil conditions in given production regions, a certain territorial specification of agricultural production, and a type of farming that best fits the natural conditions and takes the biological needs of plant and animal species into account as fully as possible. The most probable element of risk in plant production is the changeable, extreme weather. That is the reason why the specific characteristics of the place of production and the characteristics of regional production should be considered to a greater extent. The establishment of the range of varieties appropriate for the place of production is the key issue in regional production. One of our historically grown cereal plants that perfectly fits regional production is millet. Due to its short growing season, favourable reproduction ratio and the fact that it is relatively undemanding, it used to be grown in larger quantities in the middle ages. Its good nutritional values made it an important food item, but over time, as a result of industrialisation and technological progress; it has been eclipsed by other cereal crops. In our country it is mainly used to cook porridge, but it is also used in the form of flour and as a base material in the spirit drinks sector. In the recent decades, millet has been applied only in a small area, mostly as a secondary crop in areas that dried out from drainage water in late spring, or as a replacement of extinct sowings due to its late sowing time. Water will be the most significant factor for the future of agriculture, especially considering climate change.My examinations took place in the area of the Institutes for Agricultural Research and Educational Farm of University of Debrecen, in the Research Institute of Nyíregyháza, in a small-plot experiment with four replications in 2016. -
Spatial Relationships Between pH and Vegetation Pattern in an Area Contaminated with Heavy Metals
140-143Views:102It is not possible to gain information on the risk factor representing the bioavailability and the mobility of the contaminants only on the basis of their total concentrations. Especially, in case of heavy metals, which can be charaterised with very different chemical forms and their mobil and mobilizable parts are determined by complex balances highly sensitive to the changing environmental conditions. Considering mine tailings, however, the toxic elements are basically in ore forms having low adsorption capacity, thus the heavy metal ion concentration in solution is governed mainly by the pH conditions. In Gyöngyösoroszi, the spatial distribution of the total heavy metal concentrations as well as that of pH values determining the bioavailable part of the toxic elements were estimated and by mapping the vegetation pattern, relationship was analysed among the total Zn, Cu, Pb and As concentrations, the pH and the species present. Results show that the presence of the certain plant species is highly determined by the pH on the mine tailing material, the highest vegetation density was found where the bioavailability of the toxic elements were considered the smallest as a result of the neutral pH. As a result, high diversity could be found even in places where the total zinc, copper, lead and arsenic concentrations were extreme. In addition, plant species could be identified, which are tolerant to toxic elements and present even if the pH is low and the bioavailable part of the heavy metals is relatively high.