Search

Published After
Published Before

Search Results

  • Pathogenicity differences between group I and group II of Botrytis cinerea
    81-85
    Views:
    95

    Botrytis cinerea has been reported as a species complex containing two cryptic species, groups I (Botrytis pseudocinerea) and II (B. cinerea sensu stricto). In order to compare the pathogenicity of group I and group II of B. cinerea, we have selected 4 strains of group I and 4 strains of group II. The results demonstrated that competitive infection of group II was more on grape, cucumber and paprika leaves, than group I. However the results on bean leaves did not correlate the applied B. cinerea group.

  • Investigation of host-specificity of phytopathogenic fungi isolated from woody plants
    155-160
    Views:
    137

    Host-specificity is an important characteristic of fungal pathogens. Changing climate could create more appropriate environmental conditions for phytopathogens, thus formerly host-specify fungi could be able to colonize new hosts. Noxious plant pathogen fungi, which can infect several plant species are well-known worldwide. These genera may expand their range of hosts because of the appearance in new geographic areas due to climate change. This new exposure can result in serious problems in agriculture because of the lack of immunity. The susceptibility of apple tree was studied through testing pathogenicity in vitro with species isolated from walnut twigs and nuts, and identified by ITS sequences. Three of four tested species, Botryosphaeria dothidea, Diaporthe eres and Diplodia seriata colonized and necrotized the infected apple branches, while Juglanconis juglandina was not able to infect the twigs. Members of Botryosphaeriaceae were the most virulent, causing the largest lesions in the fastest way. This experiment draws attention to the threat of new host-pathogen connections, which can arise because of the favourable weather conditions and can spread between neighbouring cultures. 

  • The potential of biological control on invasive weed species
    73-75
    Views:
    41

    Sorghum halepense is one of the invasive species in Europe. This study was made to identify the morphology of fungi on invasive weed species samples on the roots of Sorghum halepense. The samples were collected in the region of Debrecen. The experiment was conducted under laboratory conditions to determine the microscopic form of fungi. The samples were put on PDA and for identification of fungi is based on the morphological characteristics of the features and colonies of conidia that were developed in Petri dishes.

    The examination of the culture revealed that the fungus from the root of Sorghum halepense was Aspergillus niger. Pathogenicity and the relationship between the fungus and Sorghum halepense are still uncertain so in the future pathogenicity tests and re-isolations from plants are very important steps.

  • Fusarium culmorum isolated from rhizosphere of wooly cupgrass (Eriochloa villosa) in Debrecen (East Hungary)
    93-96
    Views:
    142

    Wooly cupgrass (Eriochloa villosa) is an East-Asian originated weed species and it has been spreaded worldwide by now. The first occurrence of this species in Hungary was observed and published in 2008 nearby Gesztely village (Borsod-Abaúj-Zemplén county, North-East Hungary) than in the summer of 2011 a significant population was discovered next to Debrecen city (Hajdú-Bihar county, East Hungary).

    In 2013 this weed was also reported from Szentborbás village, Somogy county (South-West Hungary). These observations of spreading and its biological features (production of stolons and large number of seeds, moreover herbicide tolerance) indicate that wooly cupgrass (E. villosa) has a great potential of invasiveness, so it may become a hazardous weed not only in Hungary but in all over the world.

    The objective of this study was to identify the fungus which was isolated from wooly cupgrass (E. villosa) root residue samples which were collected after maize harvesting on arable land in late autumn, near Debrecen. The identification of the fungus based on morphological characters of colonies and the features of conidia developed on potato dextrose agar (PDA) plates. After the examination of axenic culture we revealed that the fungus from rhizosphere of wooly cupgrass was Fusarium culmorum. Pathogenicity and/or endophytic relationship between the fungus and wooly cupgrass is still uncertain so pathogenicity tests and reisolations from plants are in progress.

  • Preliminary estimation of the efficacy of Fusarium sporotrichioides Sherb. as biological control agent against common milkweed (Asclepias syriaca L.)
    201-204
    Views:
    242

    A study of fungi responsible for severe leaf spots of common milkweed (Asclepias syriaca L.) in the Hajdúság region (East Hungary), Fusarium sporotrichioides and Alternaria alternata were isolated from infested leaf tissues. F. sporotrichioides was the most virulent fungus in pathogenicity tests conducted on healthy leaves of common milkweed plants. Inoculation of common milkweed (A. syriaca) in different growth stages with F. sporotrichioides yielded similar symptoms as the original ones. Spray mixtures containing 1.0×106 conidia/ml gave effective control when common milkweed plants were sprayed until runoff occurred. Laboratory (wet chamber) and field experiments showed that asexual spores of the fungal pathogen, F. sporotrichioides, exhibited bioherbicidal activity against common milkweed (A. syriaca).

    More efficient control efficacy was observable on elder plants (at flowering stage) than younger ones. These results initiate that this fungus may be a biocontrol agent for controlling this invasive weed but should clarify its hosts because it could infect cultivated plants as well.

  • Population genetic results of Hungarian Botrytis cinerea isolates establishing new technologies with decreased chemical usage against grey mould
    259-261
    Views:
    103

    Botrytis cinerea causes gray mold on a high number of crop plants. Information about the populations of plant pathogen fungi may help to develop new strategies for the effective and economic crop protection with reduced fungicide usage. Hungarian B. cinerea populations were characterized with using different molecular genetic parameters. B. cinerea group I strains, characterized with high rate of fenhexamid resistance, could be detected only in restricted number. The Hungarian B. cinerea populations were characterized with high genetic diversity, and the regular occurrence of sexual reproduction. These results highlight the importance of rotating different type of fungicide in the plant protection technology against grey mould.