Search



Show Advanced search options Hide Advanced search options
The impact of applying foliar fertilizers on the health condition of maize
Published May 20, 2020
105-109

 

The nutrient supply of plants is becoming more important in plant protection since the appropriate condition of plants can be ensured by optimal and satisfactory nutrient supply to avoid nutritional deficiency diseases. Due to the extreme weather conditions, plants are forced to face several stress factors, which lea...ds to deterioration of the plant health. The increasing occurrence of droughts poses threat to nutrient uptake through the roots since all the nutrients can be accessible to the plants only if they are in dissolved form in the soil – which is not possible in the absence of water. Therefore, the importance of foliar fertilizer is becoming a more and more significant part of the nutrient supply, because with the help of this technology the development of any nutrient deficiency can be prevented.

In this experiment, we focused on the efficiency of two different foliar fertilizers on maize.  Foliar fertilizers were applied two times, once in the stage with 8 leaves and tasseling phenophase of the maize. To verify the efficiency of the foliar fertilizers, the chlorophyll content of untreated and treated plant’s leaves was measured after each application. Moreover, the length and diameter of maize cobs, thousand kernel weight, protein, oil and starch content were also measured, and the results were compared to the untreated (control) ones. According to the results, in all aspects significant differences were observed and due to the laboratory analysis of leaves, in the case of magnesium and zinc supply the foliar fertilizers were able to prevent the development of nutrient deficiency.

Show full abstract
18
17
Influences of water deficiency on the productivity of young plants at different sites
Published September 5, 2018
371-378

Water deficiency has become one of the most limiting factors of crop production in Hungary as the tendency in annual amounts of precipitation shows a decreasing tendency; therefore, it has become similar to those of Southern Europe. The most significant decrease in precipitation occurs typically during spring, approximately 20% of the data expr...essed in the averages of the last century. Studying the relationship between water deficiency as a stress factor and nutrient supply is important in order to improve the production efficiency of crops. Nowadays, this problem receives outstanding attention presented in numerous papers both in Hungary and globally, however, there are several questions yet to be answered. Our pot experiments were carried out under controlled greenhouse conditions in order to establish new data on these relationships. Experimental soils were typical for Western Transdanubia, taken from long-term field experiments representing four different site characteristics of the region. It was concluded from the results that drought periods during the early growth stages (i.e. 4–5 weeks after emergence) of plants may result in significant decreases in both dry matter production, nutrient concentrations, nutrient uptake and shoot:root ratios. Better nutrient supply, especially potassium, plays a significant role in reducing the negative effects of water deficiency.

Show full abstract
55
38
The effect of sulphur and nitrogen supply on the growth and nutrient content of spring wheat (Triticum aestivum L.)
Published June 30, 2018
65-70
Sulphur is an essential element for plants. Decreasing sulphur deposition from the air, and the use of more concentrated phosphate fertilizers, which contain no sulphur, has led to reports of sulphur deficiencies for wheat. Sulphur deficiency significantly affects yield and also the quality of wheat. The pot exper...iment was set up on calcareous chernozem soil at Látókép, Hungary, test plant was spring wheat (Triticum aestivum L). Seven treatments were used where nitrogen and sulphur were supplied as soil fertilizers in increasing rates (NS1, NS2, NS3) and in foliar fertilizer as well (NS1+fol., NS2+fol., NS3+fol.). Plant aboveground biomass production was determined in samples taken in the stages of development BBCH 29-30, 51-59, 61-69, 89. The nitrogen and sulphur content of straw and grain were measured. N/S ratios of grain and straw were calculated. The weights of grain were ranging between 8.6–16.1 g/pot. NS2 and NS2+fol. treatments produced the highest values. Foliar fertilizer had no further effect on grain. Analysing the values of the straw, it was observed that tendencies were similar to values of grain. The NS2 treatment produced the highest weight of straw and the NS3 rate already decreased that amount. The obtained results show the unfavourable effect of excessively high rate applied in NS3 treatment. The supplementary foliar fertilizer had no significant influence on the weight of straw. Both N and S-uptake of plant was very intensive at the stem elongation stage, then the N and S-content of plant continuously decreased in time in all treatments. The N-content of grain ranged between 2.215–2.838%.
The N-content of grain slightly increased with increasing of nitrogen doses. In the higher doses (NS2, NS3) foliar fertilization slightly increased the nitrogen content of grain, although this effect was not statistically proved. The N-content of straw varied from 0.361 to 0.605%. The growing dose of soil fertilizer also considerably increased the nitrogen content of straw. Foliar fertilization further increased the nitrogen content of straw. The S-content of grain ranged between 0.174–0.266%. The lowest fertilizer dose (NS1) significantly increased the sulphur content of grain. The further increasing fertilizer doses (NS2, NS3) did not cause additional enhance in sulphur content of grain.
The foliar fertilizer also did not change the sulphur value of plant. The increasing amount of soil fertilizer and the supplementary foliar fertilizer had no effect on the sulphur content of straw. The treatments influenced the N/S ratios of grain and straw. On the basis of experimental results it can be concluded that the examined nitrogen and sulphur containing soil fertilizer had positive effect on the growth and yield of spring wheat grown on the calcareous chernozem soil. The soil fertilizer application enhanced the grain nitrogen and sulphur content. The highest rate of fertilizer (600 kg ha-1) proved to have decreasing effect on the yield. The sulphur and nitrogen containing foliar fertilizer did not have significant effect on the yield parameters but slightly increased the nitrogen content of plant.
Show full abstract
92
63
Assessment of Environmental Susceptibility/Vulnerability of Soils
Published December 10, 2002
62-74

Soils represent a considerable part of the natural resources of Hungary. Consequently, rational land use and proper soil management – to guarantee normal soil functions – are important elements of sustainable (agricultural) development, having special importance both in the national economy and in environment protection.
The main soil fu...nctions in the biosphere are as follows: conditionally renewable natural resource; reactor, transformer and integrator of the combined influences of other natural resources (solar radiation, atmosphere, surface and subsurface waters, biological resources), place of „sphere-interactions”; medium for biomass production, primary food-source of the biosphere; storage of heat, water and plant nutrients; natural filter and detoxication system, which may prevent the deeper geological formations and the subsurface waters from various pollutants; high capacity buffer medium, which may prevent or moderate the unfavourable consequences of various environmental stresses; significant gene-reservoir, an important element of biodiversity.
Society utilizes these functions in different ways (rate, method, efficiency) throughout history, depending on the given natural conditions and socio-economic circumstances. In many cases the character of the particular functions was not properly taken into consideration during the utilization of soil resources, and the misguided management resulted in their over-exploitation, decreasing efficiency of one or more soil functions, and – over a certain limit – serious environmental deterioration.
Soil resources are threatened by the following environmental stresses:
– soil degradation processes;
– extreme moisture regime;
– nutrient stresses (deficiency or toxicity);
– environmental pollution.
Environmental stresses caused by natural factors or human activities represent an increasing ecological threat to the biosphere, as well as a socio-economic risk for sustainable development, including rational land use and soil management.
The stresses are caused by the integrated impacts of various soil properties, which are the results of soil processes (mass and energy regimes, abiotic and biotic transport and transformation and their interactions) under the combined influences of soil forming factors. Consequently, the control of soil processes is a great challenge and the main task of soil science and soil management in sustainable development.
The efficient control of these processes necessitates the following consecutive steps:
• registration of facts and consequences (information on land and soil characteristics, land use, cropping pattern, applied agrotechnics, yields, with their spatial and temporal variability);
• evaluation of potential reasons (definition and quantification of soil processes, analysis of influencing factors and their mechanisms);
• assessment of the theoretical, real, rational and economic possibilities for the control of soil processes (including their risk-assessment and impact analysis);
• elaboration of efficient technologies for the „best” control alternatives (best management practice).
Scientifically based planning and implementation of sustainable land use and rational soil management to ensure desirable soil functions, without any undesirable environmental side-effects, require adequate soil information. In the last years such data were organized into a computer-based GIS soil database in Hungary, giving opportunities for the quantification, analysis, modelling and forecasting of the studied environmental stresses and for the efficient and scientifically based prevention, elimination or reduction of environmental stresses and their unfavourable ecological and economical consequences.
Special attention was paid to the assessment of various soil degradation processes, as: (1) soil erosion by water or wind; (2) soil acidification; (3) salinization and/or alkalization; (4) physical degradation (structure destruction, compaction); (5) extreme moisture regime: drought sensitivity and waterlogging hazard; (6) biological degradation; (7) unfavourable changes in the plant nutrient regime; (8) decrease of natural buffering capacity, (9) soil (and water) pollution.
The actions against undesirable environmental stresses and their unfavourable consequences are important elements of sustainable, efficient, economically viable, socially acceptable and environmentally sound crop production and agricultural development. These are joint tasks of the state, decision makers on various levels, the land owners, the land users and – to a certain extent – of each member of the society.

Show full abstract
15
16
Nutrient deficiency and effects of various nutrition technologies on crop health
Published December 15, 2019
109-113

The impacts of climate change on crop production are increasingly noticeable. Extreme weather conditions – such as devastating droughts, which occur more often – have serious effects on crop conditions, thus damaging their defence ability against pathogens and pests. Therefore, in order to achieve high-quality and high yielding crops, it is... urgent to elaborate new technologies that improve general condition of crops and prevent development of nutrient diseases. Those crops which suffer from the lack of certain nutrients are more sensitive and their tolerance against diseases are decreased. Nitrogen – as the most influencing macronutrient in yield – is also essential in maintaining crop health. Nevertheless, due to the complicated processes in soil (such as leaching, denitrification), the utilization of nitrogen is not nearly complete, therefore nitrogen stabilizers may be needed to maximize this factor. The use of these stabilizers can be promising where plants with high nitrogen content are grown, although further experiments are needed in which impacts of nitrogen stabilizers on crop protection aspects are examined as well, since there is a close correlation between exaggerated nitrogen fertilizing and sensitivity to pests. During my research I am going to examine the combined effect of foliar fertilizer and nitrogen stabilizer on crop health. Furthermore, my goal is to find clear correlation between pathogens and the different technological variants of nutrition.

Show full abstract
35
45
Impact of nitrogen and sulphur fertilization on the growth and micronutrient content of spring wheat (Triticum aestivum L.)
Published September 5, 2018
211-219

Micronutrients are as important as macronutrients for crops. Each micronutrient has its own function in plant growth. Zinc is important for membrane integrity and phytochrome activities. Copper is an essential micronutrient required for the growth of wheat. Manganese is required for enzyme activation, in electron transport, and in disease resis...tance. The pot experiment was set up in greenhouse on calcareous chernozem soil Debrecen-Látókép with a spring wheat. In certain development stages (according to BBCH growth scale of wheat), at the beginning of stem elongation (29–30), at the heading (51–59), at the flowering (61–69) stage three average plants were removed from all pots for analysis. Fresh and dry weight of the plant samples were measured. Plant leaves after drying were digested by HNO3-H2O2 methods and manganese, zinc and copper contents of plant were quantified by atomic absorption spectrophotometry. At the flowering stage, when the nutrient uptake of plants is the most intensive, the weight of wheat ranged between 0.94–1.57 g plant-1. In this development stage, the NS2 treatment produced the highest weight of wheat, and compared to this the NS3 treatment decreased that value already. The results show unfavourable effect of NS3 treatment. On the basis of microelement content of wheat and the weight of a plant, nutrient uptake by plant were calculated. At the beginning of growth the starter treatment had positive effect on Cu-uptake compared to the NS1 treatment, where the same dose of fertilizer was stirred into the soil. Wheat is very sensitive to copper deficiency, so copper dissolved by starter treatment could be favourable to the early development of wheat. At flowering stage the Zn-uptake of wheat became the highest and it was between 133.7–234.6 mg plant-1. The Mn-uptake of wheat plant was higher than the Cu- and Zn-uptake of wheat.

This phenomenon can be explained by the fact that the untreated soil had higher Mn-content, than Cu- and Zn-content. To summarize the results, it can be stated, that the copper uptake of wheat was more affected by the different treatments in the stage of stem elongation, while Mn- and Zn-uptake of wheat were influenced primarily in the stage of heading and flowering.

Show full abstract
62
39
1 - 6 of 6 items