Search

Published After
Published Before

Search Results

  • Horticulture applicability of 3D laser scanner
    75-78
    Views:
    230

    As a result of the technological development, remote sensing instruments and methods have become widespread in all segments of life (from precision agriculture through architecture to medicine). Among the innovative development of remote sensing instruments the 3D laser scanner is overriding importance. The horticulture applicability of terrestrial laser scanning technique is innovation in the precision agriculture, because it could be determine the structure of trees and branches, the canopy extension, which can help to recognize some biophysical parameters. The examination was carried out with Leica ScanStation C10 terrestrial laser scanner in the Study and Regional Research Farm of the University of Debrecen near Pallag. In this article I present the measuring principle, the parameters and horticulture applicability of the terrestrial laser scanner.

  • Development of precision apple production technologies in Institute of Water and Environmental Management
    97-101
    Views:
    252

    From the precision agriculture point of view, by the rapid development of the investigated technological elements – global positioning system (GPS), remote sensing (RS), global information system (GIS) – the number of services, which were not available in the past, because of their speed, complexity or price are increasing. The high accuracy high-tech instruments provide opportunity to elaborate several fruit production technologies, which aim is creating and operating water and energy safe quality fruit production systems. To evaluate these possibilities, experience was carried out in the Study and Regional Research Farm of the University of Debrecen near Pallag with the use of a GreenSeeker 505 Hand Held™ Optical Sensor Unit, and its interface the Trimble AgGPS FmX Integrated Display board computer, and a ScanStation C10 laser scanner by Leica. The results show the absolute applicability of these equipments in precision horticulture.

  • Applicability of precision weed detection technologies
    163-168
    Views:
    218

    In an agricultural field or horticultural plantation, weeds compete with cultivated plants for water and nutrients. The transpirated water by the weeds is needed to be replaced, which saddles surplus costs on the farmer, which could reduce the profitability of crop production. The aim of the precision plant protection system is to protect cultivated plants by applying site-specific technologies and optimized herbicides combination and methods, without environmental damage. The first step of precision weed control is the scouting for weeds. Traditional and modern (passive and active remote sensing) weed surveying technologies are available to detect weeds. The examination was carried out in an intensive apple orchard with drip irrigation system, protected by hail net of the Study and Regional Research Farm of the University of Debrecen near Pallag. The spectral-based weed detection was worked out by the Tetracam ADC broadband multispectral camera and the GreenSeeker 505 vegetation indexmeter. A strong correlation observed between vegetation indices and weed coverage. Based on the collected data, weed maps are created in appropriate software environment, thus the spatial distributions of the weeds are determined. The species level discrimination and the recognition of weed structural parameters were executed based on the 3D point cloud data by Leica ScanStation C10 laser scanner.

  • Using integrated remote sensing methods in the Nagyerdő Natura 2000 area
    19-24
    Views:
    207

    The more widely use of GIS, remote sensing technology provides appropriate data acquisition and data processing tools to build several national and international biodiversity monitoring system of environmental protection and natur conservation. The ChangeHabitats 2 is a similar international project, which uses airborne hyperspectral and airborne laser scanning (airborne LiDAR) sources beyond traditional data collection methods to build a monitoring system of Natura 2000 habitats. The goal of our research, on one hand, was to separate the most typical species of trees which can be found in the largest coverage in the research plots of Debreceni Nagyerdő Nature Reserve from field and airborne remote sensing data, use image classification that based on spectral and geometry (height) characteristics of the trees. On the other hand our goal was to evaluate the efficient use of the integration of mobilGIS, airborne hyperspectral and airborne LiDAR data collecting methods to complement or substitut of the traditional, field data collecting methods. We used ArcGIS 10.2 and Exelis 5.0 GIS software for data evaluation, in which the mosaicing, the selection of plots and the spectral image processing were carried out.