Search

Published After
Published Before

Search Results

  • Studies of the effects of N fertilizers and Microbion UNC biofertilizer on microelement content of horseradish (Armoracia macrocarpa)
    41-45
    Views:
    125

    A field experiment on calcareous chernozem soil was performed to study the effects of different N and bacterial fertilizers on the nutrient content of horseradish (Armoracia macrocarpa). In the experiment the trials were arranged in a randomized block design with three replications, applying three levels of NH4NO3 and different N fertilizers, namely ammonium-nitrate, urea and calcium-nitrate, with or without application of Microbion UNC biofertilizer.
    In the present paper the changes and distribution of manganese, zinc and copper contents of the horseradish plant are summarized by the
    effect of different treatments.
    The Mn content of leaves were higher in all cases than those of roots, but Zn mainly accumulated in the roots. The distribution of copper within the horseradish plant was more equalized than that of Zn and Mn. Different N fertilizers and increasing doses of ammonium-nitrate had effects mainly on the microelement contents of leaves. The highest Mn contents of plant were measured in treatments of Ca(NO3)2 and Ca(NO3)2+Microbion. The lowest ammonium nitrate dose (N1) decreased the Mn content of leaves compared to control, but further doses
    (N2, N3) did not alter these values any longer. Microbion UNC biofertilizer did not have any effect on the Mn content of roots, but we measured higher Mn in leaves in some combined treatments. Ca(NO3)2 increased the zinc content in leaves and roots in a noticable manner. With the increasing of NH4NO3 doses, the Zn content of leaves and roots augmented significantly. Neither N fertilizers (or the increasing doses of NH4NO3) nor the biofertilizer application influenced the Cu content of horseradish plant. 
    N fertilizers had higher effects on the microelement content of horseradish, the biofertilizer’s effect was smaller and was not the same in every treatment.

  • Studies of the influences of different N fertilizers and Microbion UNC bacterial fertilizer on the nutrient content of soil
    134-140
    Views:
    88

    A field experiment was conducted to examine the effects of different nitrogen fertilizers in combination with bacterial fertilizer on
    nutrient uptake of horseradish and plant available nutrients of the soil. Three different N fertilizers, ammonium-nitrate, urea and calciumnitrate
    (116 kg ha-1 N) in combination with Microbion UNC bacterial fertilizer (2 kg ha-1) were applied as treatments in a randomized
    complete block design in three replications. In this paper we presented the results of soil measurements. The soil of the experimental area
    was chernozem with medium sufficiency level of N and P and poor level of K.
    Our main results:
    The amount of 0.01M CaCl2 soluble inorganic nitrogen fractions, NO3
    --N and NH4
    +-N and also the quantity of soluble organic-N were
    almost the same in the soil. N fertilizers significantly increased all the soluble N fractions. The amount of NO3
    --N increased to the greatest
    extent and the increase of organic N was the slightest. We measured the largest CaCl2 soluble NO3
    - -N and total-N contents in the plots
    treated with ammonium-nitrate, the largest NH4
    +-N in the plots treated with calcium-nitrate and the largest organic-N fraction in plots
    treated with urea.
    Bacterial inoculation also increased both soluble inorganic nitrogen forms and also total-N content of soil compared to the control. In
    the case of combined (artificial and bacterial fertilizer) treatments we measured lower NO3
    --N, organic-N and total-N compared to the
    values of plots having only nitrogen fertilizer treatments. On the contrary in the plots with combined treatments the CaCl2 soluble NH4
    +-N
    content of soil in more cases were higher than that of values with artificial fertilizer treatment.
    As a function of calcium-nitrate application increased AL-P2O5 and AL-K2O values were measured compared to control. Microbion
    UNC supplement of calcium nitrate yielded also increase in AL-P2O5 and AL-K2O values, till then supplement of ammonium-nitrate fertilizer
    yielded a decrease in these values compared to the control.
    All nitrogen fertilizers resulted in a significant decrease in AL-Mg content of soil compared to the control. Nevertheless bacterial
    fertilizer increased AL-Mg values in any cases.